Publications by authors named "Muhan Huang"

Human cytomegalovirus (HCMV) is a common herpesvirus that persistently infects a large portion of the world's population. Despite the robust host immune response, HCMV is able to replicate, evade host defenses, and establish latency throughout the lifespan by developing multiple immunomodulatory strategies, making the studies on the interaction between HCMV infection and host response particularly important. HCMV has a strict host specificity that specifically infects humans.

View Article and Find Full Text PDF

The increasing emergence and re-emergence of RNA virus outbreaks underlines the urgent need to develop effective antivirals. RNA interference (RNAi) is a sequence-specific gene silencing mechanism that is triggered by small interfering RNAs (siRNAs) or short hairpin RNAs (shRNAs), which exhibits significant promise for antiviral therapy. AGO2-dependent shRNA (agshRNA) generates a single-stranded guide RNA and presents significant advantages over traditional siRNA and shRNA.

View Article and Find Full Text PDF
Article Synopsis
  • HCMV (human cytomegalovirus) uses its UL36 protein to inhibit caspase-8/extrinsic apoptosis and also suppresses immune signaling through interference with IRF3.
  • This dual function helps the virus evade the immune response while still managing to prevent apoptosis, which can sometimes enhance immune signaling.
  • Mutational analysis confirmed that the wild-type UL36 is essential for effective HCMV replication, highlighting its critical role in balancing immune control and apoptosis inhibition for optimal viral infection.
View Article and Find Full Text PDF

Immune evasion and inhibition of apoptosis are required for successful virus infection. However, inhibition of apoptosis can increase antiviral immune responses, which can then clear viral infections. Here we show that human cytomegalovirus (HCMV)-encoded UL37 exon-1 protein (UL37x1) not only inhibits apoptosis but also suppresses the cGAS-STING immune pathway.

View Article and Find Full Text PDF

RNA-remodeling proteins, including RNA helicases and chaperones, play vital roles in the remodeling of structured RNAs. During viral replication, viruses require RNA-remodeling proteins to facilitate proper folding and/or re-folding the viral RNA elements. Coxsackieviruses B3 (CVB3) and Coxsackieviruses B5 (CVB5), belonging to the genus Enterovirus in the family Picornaviridae, have been reported to cause various infectious diseases such as hand-foot-and-mouth disease, aseptic meningitis, and viral myocarditis.

View Article and Find Full Text PDF

• The advantages of COVID-19 detection in saliva were systematically introduced. • Saliva-based POCT technologies for the detection of COVID-19 were reviewed. • A positive correlation between COVID-19 antibodies in saliva and serum was demonstrated.

View Article and Find Full Text PDF

CRISPR-based assays for the detection of nucleic acids are highly specific, yet they are not fast, sensitive or easy to use. Here we report a one-step fluorescence assay for the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA in nasopharyngeal samples, with a sample-to-answer time of less than 20 minutes and a sensitivity comparable to that of quantitative real-time PCR with reverse transcription (RT-qPCR). The assay uses suboptimal protospacer adjacent motifs, allowing for flexibility in the design of CRISPR RNAs and slowing down the kinetics of Cas12a-mediated collateral cleavage of fluorescent DNA reporters and cis cleavage of substrates, which leads to stronger fluorescence owing to the accumulation of amplicons generated by isothermal recombinase polymerase amplification.

View Article and Find Full Text PDF

The pandemic of COVID-19 by SARS-CoV-2 has become a global disaster. However, we still don't know how specific SARS-CoV-2-encoded proteins contribute to viral pathogenicity. We found that SARS-CoV-2-encoded membrane glycoprotein M could induce caspase-dependent apoptosis interacting with PDK1 and inhibiting the activation of PDK1-PKB/Akt signaling.

View Article and Find Full Text PDF

Children usually develop less severe symptoms responding to Coronavirus Disease 2019 (COVID-19) than adults. However, little is known about the molecular alterations and pathogenesis of COVID-19 in children. We conducted plasma proteomic and metabolomic profilings of the blood samples of a cohort containing 18 COVID-19-children with mild symptoms and 12 healthy children, which were enrolled from hospital admissions and outpatients, respectively.

View Article and Find Full Text PDF

SARS-coronavirus-2-induced immune dysregulation and inflammatory responses are involved in the pathogenesis of coronavirus disease-2019 (COVID-19). However, very little is known about immune cell and cytokine alterations in specific organs of COVID-19 patients. Here, we evaluated immune cells and cytokines in postmortem tissues, i.

View Article and Find Full Text PDF

The coronavirus disease 2019 (COVID-19) pandemic is a global public health crisis. However, little is known about the pathogenesis and biomarkers of COVID-19. Here, we profiled host responses to COVID-19 by performing plasma proteomics of a cohort of COVID-19 patients, including non-survivors and survivors recovered from mild or severe symptoms, and uncovered numerous COVID-19-associated alterations of plasma proteins.

View Article and Find Full Text PDF

The pandemic of the coronavirus disease 2019 (COVID-19) has become a global public health crisis. The symptoms of COVID-19 range from mild to severe, but the physiological changes associated with COVID-19 are barely understood. In this study, we performed targeted metabolomic and lipidomic analyses of plasma from a cohort of patients with COVID-19 who had experienced different symptoms.

View Article and Find Full Text PDF

The ongoing outbreak of Coronavirus Disease 2019 (COVID-19) has become a global public health emergency. SARS-coronavirus-2 (SARS-CoV-2), the causative pathogen of COVID-19, is a positive-sense single-stranded RNA virus belonging to the family Coronaviridae. For RNA viruses, virus-encoded RNA helicases have long been recognized to play pivotal roles during viral life cycles by facilitating the correct folding and replication of viral RNAs.

View Article and Find Full Text PDF