Photoreforming presents a promising strategy for upcycling waste polyester-derived alcohol into valuable chemicals. However, it remains a great challenge due to its low performance and unsatisfactory selectivity toward high-value C products. Here, we report the highly efficient and selective conversion of ethylene glycol (EG, a monomer of polyethylene terephthalate (PET)) to glycolaldehyde using atomically dispersed Pd species supported on TiO catalyst.
View Article and Find Full Text PDFPhotocatalytic upcycling of waste polyolefins into value-added chemicals provides promise in plastic waste management and resource utilization. Previous works demonstrate that polyolefins can be converted into carboxylic acids, with CO as the final oxidation product. It is still challenging to explore more transformation products, particularly mild-oxidation products such as alcohols, because of their instability compared with polymer substrates, which are prone to oxidation during catalytic reactions.
View Article and Find Full Text PDFThe selective recycling of mixed plastic wastes with similar structural units is challenging. While heterogeneous catalysis shows potential for selective recycling, challenges such as complex mass transfer at multiphase interfaces and unclear catalytic mechanisms have slowed progress. In this study, a breakthrough in recycling mixed polyester wastes is introduced using heterogeneous photothermal catalysis.
View Article and Find Full Text PDFUpgrading the most difficult-to-recycle waste polyvinyl chloride remains a significant challenge due to the potential formation of highly toxic substances, such as polychlorinated biphenyls. Here, we introduce a paradigm shift with a mild photothermal dechlorination-carbonization process that converts waste polyvinyl chloride plastics into valuable carbon materials. Through detailed techno-economic assessment (TEA) process modeling, based on recycling 96,000 tons of plastics, we demonstrate that utilizing clean solar energy for photothermal conversion can save approximately 2.
View Article and Find Full Text PDFMetal oxide nanostructures with single-atomic heteroatom incorporation are of interest for many applications. However, a universal and scalable synthesis approach with high heteroatom concentrations represents a formidable challenge, primarily due to the pronounced structural disparities between M-O and M-O units. Here, focusing on TiO as the exemplified substrate, we present a diethylene glycol-assisted synthetic platform tailored for the controlled preparation of a library of M-TiO nanostructures, encompassing 15 distinct unary M-TiO nanostructures, along with two types of binary and ternary composites.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
As the initial synthesized colloidal quantum dots (CQDs) are generally capped with insulating ligands, ligand exchange strategies are essential in the fabrication of CQD films for solar cells, which can regulate the surface chemical states of CQDs to make them more suitable for thin-film optoelectronic devices. However, uncontrollable surface adsorption of water molecules during the ligand exchange process introduces new defect sites, thereby impairing the resultant device performance, which attracts more efforts devoted to it but remains a puzzle. Here, we develop a solvent-engineering-assisted ligand exchange strategy to revamp the surface adsorption, improve the exchange efficiency, and modulate the surface chemistry for the environmentally friendly lead-free silver bismuth disulfide (AgBiS) CQDs.
View Article and Find Full Text PDFChempluschem
November 2024
With the escalating demand and utilization of plastics, considerable attention has been given to controlling plastic pollution. Among these methodologies, photocatalytic upcycling of plastic has emerged as a promising method for plastic management due to its energy-saving and eco-friendly properties. In the past several years, great efforts have been devoted to the photocatalytic conversion of a variety of commercial plastic types.
View Article and Find Full Text PDFHydro-depolymerization presents a promising avenue for transforming plastic waste into high-value hydrocarbons, offering significant potential for value-added recycling. However, a major challenge in this method arises from kinetic limitations due to insufficient hydrogen concentration near the active sites, requiring optimal catalytic performance only at higher hydrogen pressures. In this study, we address this hurdle by developing "hydrogen bubble catalysts" featuring Ru nanoparticles within mesoporous SBA-15 channels (Ru/SBA).
View Article and Find Full Text PDFWhile Ru-catalyzed hydrogenolysis holds significant promise in converting waste polyolefins into value-added alkane fuels, a major constraint is the high cost of noble metal catalysts. In this work, we propose, for the first time, that Co-based catalysts derived from CoAl-layered double hydroxide (LDH) are alternatives for efficient polyolefin hydrogenolysis. Leveraging the chemical flexibility of the LDH platform, we reveal that metallic Co species serve as highly efficient active sites for polyolefin hydrogenolysis.
View Article and Find Full Text PDFThe vulnerability of mixed halide perovskite nanocrystals (NCs) remains challenging because of the weak interaction between commonly employed ligands, oleic acid/oleylamine (OAm/OA) and halide anions, coupled with substantial surface phonon energy. Here, we introduce 3-aminopropyltriethoxysilane (APTES) as a capping ligand to modify CsPbBrI NCs to enhance the interactions between them. The optical properties have been significantly enhanced, and halide segregation has been suppressed, both of which can be attributed to the reduced phonon energy and exciton-phonon coupling strength.
View Article and Find Full Text PDFThe present polyolefin hydrogenolysis recycling cases acknowledge that zerovalent Ru exhibits high catalytic activity. A pivotal rationale behind this assertion lies in the propensity of the majority of Ru species to undergo reduction to zerovalent Ru within the hydrogenolysis milieu. Nonetheless, the suitability of zerovalent Ru as an optimal structural configuration for accommodating multiple elementary reactions remains ambiguous.
View Article and Find Full Text PDFPlastic waste in the environment causes significant environmental pollution. The potential of using chemical methods for upcycling plastic waste offers a dual solution to ensure resource sustainability and environmental restoration. This article provides a comprehensive overview of the latest technologies driven by solar-driven, electro/photoelectrochemical-catalytic, and microwave-assisted methods for the conversion of plastics into various valuable chemicals.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2024
Additive engineering has emerged as one of the most promising strategies to improve the performance of perovskite solar cells (PSCs). Among additives, perovskite nanocrystals (NCs) have a similar chemical composition and matched lattice structure with the perovskite matrix, which can effectively enhance the efficiency and stability of PSCs. However, relevant studies remain limited, and most of them focus on bromide-involved perovskite NCs, which may undergo dissolution and ion exchange within the FAPbI host, potentially resulting in an enlarged band gap.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
November 2023
Chemical upcycling that catalyzes waste plastics back to high-purity chemicals holds great promise in end-of-life plastics valorization. One of the main challenges in this process is the thermodynamic limitations imposed by the high intrinsic entropy of polymer chains, which makes their adsorption on catalysts unfavorable and the transition state unstable. Here, we overcome this challenge by inducing the catalytic reaction inside mesoporous channels, which possess a strong confined ability to polymer chains, allowing for stabilization of the transition state.
View Article and Find Full Text PDFBi-based materials are one of the most promising candidates for electrochemical CO reduction reaction (CO RR) to formate; however, the majority of them still suffer from low current density and stability that essentially constrain their potential applications at the industrial scale. Surface modification represents an effective approach to modulate the electrode microenvironment and the relative binding strength of key intermediates. Herein, it is demonstrated that the surface comodification with halides and alkali metal ions from the conversion of Bi-based halide perovskite nanocrystals is a viable strategy to boost the CO RR performance of Bi for formate electrosynthesis.
View Article and Find Full Text PDFCatalytic hydrogenolysis of end-of-life polyolefins can produce value-added liquid fuels and therefore holds great promises in plastic waste reuse and environmental remediation. The major challenge limiting the recycling economic benefit is the severe methanation (usually >20%) induced by terminal C-C cleavage and fragmentation in polyolefin chains. Here, we overcome this challenge by demonstrating that Ru single-atom catalyst can effectively suppress methanation by inhibiting terminal C-C cleavage and preventing chain fragmentation that typically occurs on multi-Ru sites.
View Article and Find Full Text PDFPbS quantum dots (QDs) are promising building blocks for solution-processed short-wavelength infrared (SWIR) devices. The recently developed direct synthesis of semi-conductive PbS QD inks has substantially simplified the preparation processing and reduced the material cost, while facing the challenge to synthesize large-size QDs with absorption covering the SWIR region. Herein, we for the first time realize a low-cost, scalable synthesis of SWIR PbS QD inks after an extensive investigation of the reaction kinetics.
View Article and Find Full Text PDFAll-inorganic lead halide perovskite nanocrystals (NCs) emerge as a rising star in photovoltaic fields on account of their excellent optoelectronic properties. However, it still remains challenging to further promote photovoltaic efficiency due to the susceptible surface and inevitable vacancies. Here, this work reports a 3D/2D core/shell perovskite heterojunction based on CsPbI NCs and its performance in solar cells.
View Article and Find Full Text PDFWhile tuning the electronic structure of Pt can thermodynamically alleviate CO poisoning in direct methanol fuel cells, the impact of interactions between intermediates on the reaction pathway is seldom studied. Herein, we contrive a PtBi model catalyst and realize a complete inhibition of the CO pathway and concurrent enhancement of the formate pathway in the alkaline methanol electrooxidation. The key role of Bi is enriching OH adsorbates (OH) on the catalyst surface.
View Article and Find Full Text PDFBuilding a reliable relationship between the electronic structure of alloyed metallic catalysts and catalytic performance is important but remains challenging due to the interference from many entangled factors. Herein, a PdBi surface alloy structural model, by tuning the deposition rate of Bi atoms relative to the atomic interdiffusion rate at the interface, realizes a continuous modulation of the electronic structure of Pd. Using advanced X-ray characterization techniques, we provide a precise depiction of the electronic structure of the PdBi surface alloy.
View Article and Find Full Text PDFThe instability of perovskite nanocrystals (NCs) to moisture, heat, and blue light severely hinders their commercial applications in quantum dot displays. Here, organic semiconducting molecules are introduced onto CsPbBr NCs, and the as-obtained CsPbBr NCs have a high photoluminescent quantum yield (PLQY) of 82% and extremely high stability in harsh commercial accelerated operational stability tests (such as high temperature (85 °C) and high humidity (85%)). The products can survive and maintain more than 80% of the initial PL intensity value under high temperature, high humidity, and long-term blue light irradiation for hundreds to thousands of hours.
View Article and Find Full Text PDFAll-inorganic lead halide perovskite (CsPbX , X = Cl, Br, I, or their mixture) nanocrystals (NCs) have achieved inspiring advancements in optoelectronic fields but still suffer from poor durability when exposed to environmental stimuli such as water, irradiation and heat. Herein, a strategy of employing pyrophosphate as the inert shell for CsPbX NCs is reported. The strong binding between pyrophosphate and CsPbBr surface can stabilize the perovskite structure well.
View Article and Find Full Text PDFPlasmonic nanomaterials with strong absorption at near-infrared frequencies are promising photothermal therapy agents (PTAs). The pursuit of high photothermal conversion efficiency has been the central focus of this research field. Here, we report the development of plasmonic nanoparticle clusters (PNCs) as highly efficient PTAs and provide a semiquantitative approach for calculating their resonant frequency and absorption efficiency by combining the effective medium approximation (EMA) theory and full-wave electrodynamic simulations.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
April 2022
Mn-doping in cesium lead halide perovskite nanoplatelets (NPls) is of particular importance where strong quantum confinement plays a significant role towards the exciton-dopant coupling. In this work, we report an immiscible bi-phasic strategy for post-synthetic Mn-doping of CsPbX (X=Br, Cl) NPls. A systematic study shows that electron-donating oleylamine acts as a shuttle ligand to transport MnX through the water-hexane interface and deliver it to the NPls.
View Article and Find Full Text PDF