Publications by authors named "Muhammod Rafsanjani"

Although advancing the therapeutic alternatives for treating deadly cancers has gained much attention globally, still the primary methods such as chemotherapy have significant downsides and low specificity. Most recently, Anticancer peptides (ACPs) have emerged as a potential alternative to therapeutic alternatives with much fewer negative side-effects. However, the identification of ACPs through wet-lab experiments is expensive and time-consuming.

View Article and Find Full Text PDF

Background: The classification of motor imagery electroencephalogram (MI-EEG) is a pivotal task in the biosignal classification process in the brain-computer interface (BCI) applications. Currently, this bio-engineering-based technology is being employed by researchers in various fields to develop cutting-edge applications. The classification of real-time MI-EEG signals is the most challenging task in these applications.

View Article and Find Full Text PDF

The information of a cell is primarily contained in deoxyribonucleic acid (DNA). There is a flow of DNA information to protein sequences via ribonucleic acids (RNA) through transcription and translation. These entities are vital for the genetic process.

View Article and Find Full Text PDF

Motivation: Extracting useful feature set which contains significant discriminatory information is a critical step in effectively presenting sequence data to predict structural, functional, interaction and expression of proteins, DNAs and RNAs. Also, being able to filter features with significant information and avoid sparsity in the extracted features require the employment of efficient feature selection techniques. Here we present PyFeat as a practical and easy to use toolkit implemented in Python for extracting various features from proteins, DNAs and RNAs.

View Article and Find Full Text PDF