Polymers (Basel)
October 2024
This study investigates the flexural behavior of 3D-printed multi-topology lattice beams, with a specific emphasis on octet and cube lattice geometries created through fused deposition modeling (FDM). The mechanical properties of these beams were evaluated through quasi-static three-point bending tests. A comparative analysis of load-carrying capacity, energy absorption, and specific energy absorption (SEA) indicates that octet lattice beams exhibit superior performance to cube lattice beams.
View Article and Find Full Text PDFIn comparison to monolithic materials, cellular solids have superior energy absorption capabilities. Of particular interest within this category are the periodic lattice materials, which offer repeatable and highly customizable behavior, particularly in combination with advances in additive manufacturing technologies. In this paper, the crashworthiness of engineering multi-layer, multi-topology (MLMT) resin lattices is experimentally examined.
View Article and Find Full Text PDF