Publications by authors named "Muhammet Bektas"

Objectives: The present study aims to investigate the changes in the expression levels of miR-675 and some selenoproteins (Sel K, Sel W, and Sel P) in patients with breast cancer, before and after radiotherapy.

Subjects And Methods: This study included 35 breast cancer patients who applied to the Department of Radiation Oncology for radiotherapy and 25 healthy female controls. miR-675 expressions were analyzed by using quantitative reverse-transcription polymerase chain reaction (qRT-PCR).

View Article and Find Full Text PDF

The interaction between diphtheria toxin (DT) and nicotinamide adenine dinucleotide (NAD) is central to DT's enzymatic activity, which involves ADP-ribosylation of eukaryotic elongation factors. This study aims to elucidate how solvent environments influence the thermodynamic and structural properties of the DT-NAD interaction. Using Raman Spectroscopy, and complementary techniques, we analyzed two different DTs, and by using Differential Scanning Calorimetry (DSC) we try to understand DT-NAD binding under varying solvent conditions, including distilled water, phosphate-buffered saline (PBS), and different concentrations of dimethyl sulfoxide (DMSO).

View Article and Find Full Text PDF

Cucurbitacins have high economic value as they are a major source of food and have pharmacological properties. Cucurbitacin I (CuI) is a plant-derived natural tetracyclic triterpenoid compound that shows an anticancer effect via inhibiting the JAK2-STAT3 signaling pathway. The actin cytoskeleton is the most abundant protein in cells and regulates critical events through reorganization in cells.

View Article and Find Full Text PDF

Valproic acid (VPA) is one of the most widely used antiepileptic drugs. The protective role of VPA and the role of the TRPM2 channel in this mechanism in developing neuronal damage due to increased pentylenetetrazol (PTZ)-induced neurotoxicity in SH-SY5Y cells were not clarified. Here, we investigated the role of VPA via modulation of TRPM2 channel on cell death and oxidative neurotoxicity in SH-SY5Y cells.

View Article and Find Full Text PDF

Objective: Diphtheria toxin (DTx) is a well-characterized bacterial toxin. However, the endocytic pathway of the mutant of DTx, CRM197, which is used as an immunological adjuvant, has not yet been fully explained. The aim of this study was to investigate the intracellular trafficking of CRM197-loaded endosomes.

View Article and Find Full Text PDF

Carbon nanotube (CNTs) is a new alternative for efficient drug delivery and it has a great potential to change drug delivery system profile in pharmaceutical industry. One of the important advantage of CNTs is their needle-like, cylindrical shape. This shape provides a high surface area for multiple connections and adsorption onto for millions of therapeutic molecules.

View Article and Find Full Text PDF

CRM197, cross-reacting material 197, is a mutant of diphtheria toxin (DTx). CRM197 is used in pharmacology as a carrier protein. It has been recently shown that CRM197 causes breakdown in actin filaments.

View Article and Find Full Text PDF

Eukaryotic elongation factor 2 (eEF2) plays an important role in eukaryotic polypeptide chain elongation. Adenosine diphosphate (ADP)-ribosylation is a post-translational modification reaction that catalyzes the transfer of ADP-ribose group to eEF2 and this causes the inhibition of protein synthesis. Indeed, in the absence of diptheria toxin, endogenous ADP-ribosylation can occur.

View Article and Find Full Text PDF

Poly(ADP-ribose) polymerase-1 (PARP-1) enzyme has critical roles in DNA replication repair and recombination. Thus, PARP-1 inhibitors play an important role in the cancer therapy. In the current study, we have performed combination of in silico and in vitro studies in order to discover novel inhibitors against PARP-1 target.

View Article and Find Full Text PDF

Diphtheria toxin (DT) and its N-terminal fragment A (FA) catalyse the transfer of the ADP-ribose moiety of nicotinamide adenine dinucleotide (NAD) into a covalent linkage with eukaryotic elongation factor 2 (eEF2). DT-induced cytotoxicity is versatile, and it includes DNA cleavage and the depolymerisation of actin filaments. The inhibition of the ADP-ribosyltransferase (ADPrT) activity of FA did not affect the deoxyribonuclease activity of FA or its interaction with actin.

View Article and Find Full Text PDF

Diphtheria toxin has been well characterized in terms of its receptor binding and receptor mediated endocytosis. However, the precise mechanism of the cytosolic release of diphtheria toxin fragment A from early endosomes is still unclear. Various reports differ regarding the requirement for cytosolic factors in this process.

View Article and Find Full Text PDF

It was shown by gel filtration and viscosity measurements that N-terminal fragment (FA) of diphtheria toxin (DT) can interact with both G- and F-actin (filamentous actin). Elution profiles on Sephadex G-100 indicated the formation of a binary complex of fragment A (FA) with globular actin monomer (G-actin), which was inhibited by gelsolin. Deoxyribonuclease I (DNase I) in turn appeared to interact with this complex.

View Article and Find Full Text PDF

Eukaryotic elongation factor 2 (eEF-2) can undergo ADP-ribosylation in the absence of diphtheria toxin. The binding of free ADP-ribose and endogenous transferase-dependent ADP-ribosylation were distinct reactions for eEF-2, as indicated by different findings. Incubation of eEF-2 tryptic fragment 32/33 kDa (32F) with NAD was ADP-ribosylated and gave rise to the covalent binding of ADP-ribose to eEF-2.

View Article and Find Full Text PDF

Eukaryotic elongation factor 2 can undergo ADP-ribosylation in the absence of diphtheria toxin under the action of an endogenous transferase. The investigation which aimed to gain insight into the nature of endogenous ADP-ribosylation revealed that this reaction may be, in some cases, due to covalent binding of free ADP-ribose to elongation factor 2. Binding of free ADP-ribose, and NAD- and endogenous transferase-dependent ADP-ribosylation were suggested to be distinct reactions by different findings.

View Article and Find Full Text PDF

Different lines of evidence indicate that eukaryotic elongation factor 2 (eEF2) can be ADP-ribosylated endogenously. The physiological significance of this reaction has, however, remained unclarified. In order to address this issue we investigated the in vivo ADP-ribosylation of eEF2 and the effect of oxidative stress thereon.

View Article and Find Full Text PDF

An inhibitor of diphtheria toxin- and endogenous transferase-dependent ADP-ribosylation of eukaryotic elongation factor 2 (eEF2) has been found in the cytoplasmic fraction from rat liver. We provide evidence that this cytoplasmic inhibitor corresponds to actin, which gives rise also to inhibition of polyphenylalanine (polyPhe) synthesis. Both globular monomeric (G-actin) and filamentous (F-actin) forms of actin appear to be inhibitory on the action of elongation factors 1 and 2 (eEF1 and eEF2) in polyPhe synthesis with the inhibitory effect of G-actin proving to be stronger.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiontmbqtetdcn9ddsbek5m13liij34ge7ao): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once