Publications by authors named "Muhammed Aktolun"

Kainate receptors (KARs) are a subtype of ionotropic glutamate receptor (iGluR) channels, a superfamily of ligand-gated ion channels which mediate the majority of excitatory neurotransmission in the central nervous system. KARs modulate neuronal circuits and plasticity during development and are implicated in neurological disorders, including epilepsy, depression, schizophrenia, anxiety, and autism. Calcium-permeable KARs undergo ion channel block, but the therapeutic potential of channel blockers remains underdeveloped, mainly due to limited structural knowledge.

View Article and Find Full Text PDF

Kainate receptors, a subclass of ionotropic glutamate receptors, are tetrameric ligand-gated ion channels that mediate excitatory neurotransmission. Kainate receptors modulate neuronal circuits and synaptic plasticity during the development and function of the central nervous system and are implicated in various neurological and psychiatric diseases, including epilepsy, depression, schizophrenia, anxiety and autism. Although structures of kainate receptor domains and subunit assemblies are available, the mechanism of kainate receptor gating remains poorly understood.

View Article and Find Full Text PDF

TRP channels are implicated in various diseases, but high structural similarity between them makes selective pharmacological modulation challenging. Here, we study the molecular mechanism underlying specific inhibition of the TRPM7 channel, which is essential for cancer cell proliferation, by the anticancer agent CCT128930 (CCT). Using cryo-EM, functional analysis, and MD simulations, we show that CCT binds to a vanilloid-like (VL) site, stabilizing TRPM7 in the closed non-conducting state.

View Article and Find Full Text PDF

N-Methyl-D-aspartate receptors (NMDARs) are glutamate-gated ion channels found in the nerve cell membranes. As a result of overexcitation of NMDARs, neuronal death occurs and may lead to diseases such as epilepsy, stroke, Alzheimer's disease, and Parkinson's disease. In this study, human GluN1- GluN2A type NMDAR structure is modeled based on the X-ray structure of the Xenopus laevis template and missing loops are added by ab-initio loop modeling.

View Article and Find Full Text PDF