Publications by authors named "Muhammad-Waqas Khalid"

Polymer electrolyte membrane fuel cells (PEMFCs) and PEM electrolyzer are emerging technologies that produce energy with zero carbon emissions. However, the commercial feasibility of these technologies mostly relies on their efficiency, which is determined by individual parts, including the gas diffusion layer (GDL). GDL transfers fluid and charges while protecting other components form flooding and corrosion.

View Article and Find Full Text PDF

Proton exchange membrane fuel cell (PEMFC) is a renewable energy source rapidly approaching commercial viability. The performance is significantly affected by the transfer of fluid, charges, and heat; gas diffusion layer (GDL) is primarily concerned with the consistent transfer of these components, which are heavily influenced by the material and design. High-efficiency GDL must have excellent thermal conductivity, electrical conductivity, permeability, corrosion resistance, and high mechanical characteristics.

View Article and Find Full Text PDF

Flexible photonic devices based on soft polymers enable real-time sensing of environmental conditions in various industrial applications. A myriad of fabrication techniques have been established for producing optical devices, including photo and electron-beam lithography, nano/femtosecond laser writing, and surface imprinting or embossing. However, among these techniques, surface imprinting/embossing is simple, scalable, convenient to implement, can produce nanoscale resolutions, and is cost-effective.

View Article and Find Full Text PDF

Holographic flexible and rigid nanostructures in the visible to near infrared range play vital roles in various applications, including displays, data storage, imaging, and security. However, personalized use of holography is limited due to the time-consuming, costly and complex nanofabrication procedures. Personalized holography can be improved/extended through rapid, efficient and low-cost techniques on rigid, flexible and edible materials.

View Article and Find Full Text PDF

Objective: The main goal of this research was to demonstrate the potential value of boron nitride nanoplatelets (BNNPs), which have excellent mechanical properties and biocompatibility, as a suitable reinforcement for dental materials.

Methods: The BNNPs were prepared by exfoliating h-BN via high-energy ball-milling and dispersion on a zirconia matrix. Then the composite powder was consolidated using spark plasma sintering.

View Article and Find Full Text PDF

Ultra-High Molecular Weight Polyethylene (UHMWPE) is used in biomedical applications due to its high wear-resistance, ductility, and biocompatibility. A great deal of research in recent decades has focused on further improving its mechanical and tribological performances in order to provide durable implants in patients. Several methods, including irradiation, surface modifications, and reinforcements have been employed to improve the tribological and mechanical performance of UHMWPE.

View Article and Find Full Text PDF

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

View Article and Find Full Text PDF

Optical sensors for detecting temperature and strain play a crucial role in the analysis of environmental conditions and real-time remote sensing. However, the development of a single optical device that can sense temperature and strain simultaneously remains a challenge. Here, a flexible corner cube retroreflector (CCR) array based on passive dual optical sensing (temperature and strain) is demonstrated.

View Article and Find Full Text PDF

The optical phase conjugation (OPC) through photonic nanostructures in coherent optics involves the utilization of a nonlinear optical mechanism through real-time processing of electromagnetic fields. Their applications include spectroscopy, optical tomography, wavefront sensing, and imaging. The development of functional and personalized holographic devices in the visible and near-infrared spectrum can be improved by introducing cost-effective, rapid, and high-throughput fabrication techniques and low-cost recording media.

View Article and Find Full Text PDF