Acute cellular rejection remains a significant obstacle affecting successful outcomes of organ transplantation including vascularized composite tissue allografts (VCA). Donor antigen presenting cells (APCs), particularly dendritic cells (DCs), orchestrate early alloimmune responses by activating recipient effector T cells. Employing a targeted approach, we investigated the impact of donor-derived conventional DCs (cDCs) and APCs on the immunogenicity of skin and skin-containing VCA grafts, using mouse models of skin and hind limb transplantation.
View Article and Find Full Text PDFIntroduction: Uterus transplantation has revolutionized reproductive medicine for women with absolute uterine factor infertility, resulting in more than 40 reported successful live births worldwide to date. Small animal models are pivotal to refine this surgical and immunological challenging procedure aiming to enhance safety for both the mother and the child.
Material And Methods: We established a syngeneic bicornuate uterus transplantation model in young female Lewis rats.
Endothelin-1 is a key regulator of vascular tone and blood pressure in health and disease. We have recently found that ET-1 production in human microvascular endothelial cells (HMECs) can be promoted by angiotensin II (Ang II) through a novel mechanism involving octamer-binding transcription factor-1 (Oct-1), NADPH oxidase-2 (NOX2), and superoxide anions. As the formation of bioactive ET-1 also depends on endothelin-converting enzyme-1 (ECE-1), we investigated the transcriptional regulation of the gene.
View Article and Find Full Text PDFPlast Reconstr Surg Glob Open
September 2023
Background: The mouse hind limb model represents a powerful research tool in vascularized composite tissue allotransplantation, but its applicability is limited due to poor graft survival (62%-83%). Vascular thrombosis and massive hemorrhage are the major causes for these drop-outs. We hypothesize that because of better anticoagulation effect and lower risk of thrombocytopenia, application of low molecular weight heparin (LMWH) will minimize vascular complications and enhance graft and animal survival.
View Article and Find Full Text PDFAims: Expanded hemodialysis (HDx) therapy with improved molecular cut-off dialyzers exerts beneficial effects on lowering uremia-associated chronic systemic microinflammation, a driver of endothelial dysfunction and cardiovascular disease (CVD) in hemodialysis (HD) patients with end-stage renal disease (ESRD). However, studies on the underlying molecular mechanisms are still at an early stage. Here, we identify the (endothelial) transcription factor Krüppel-like factor 2 (KLF2) and its associated molecular signalling pathways as key targets and regulators of uremia-induced endothelial micro-inflammation in the HD/ESRD setting, which is crucial for vascular homeostasis and controlling detrimental vascular inflammation.
View Article and Find Full Text PDFBackground: Increasing evidence suggests that superoxide ions produced by NOX (nicotinamide adenine dinucleotide phosphate oxidases) mediate vascular effects of Ang II (angiotensin II) evoked by atherogenic diets. Here, we analyzed the mechanism by which NOX2 contributes to Ang II-induced ET-1 (endothelin 1) production in human microvascular endothelial cells.
Methods: The effects of high-fat diet were compared between WT (wild type) and ()-deficient mice.
Donor age is a major risk factor for allograft outcome in kidney transplantation. The underlying cellular mechanisms and the recipient's immune response within an aged allograft have yet not been analyzed. A comprehensive immunophenotyping of naïve and transplanted young versus aged kidneys revealed that naïve aged murine kidneys harbor significantly higher frequencies of effector/memory T cells, whereas regulatory T cells were reduced.
View Article and Find Full Text PDFBackground: Neutrophil gelatinase-associated lipocalin (NGAL) is a diagnostic marker of intrinsic kidney injury produced by damaged renal cells and by neutrophils. ANCA-associated vasculitis features necrotizing crescentic GN (NCGN), and ANCA-activated neutrophils contribute to NCGN. Whether NGAL plays a mechanistic role in ANCA-associated vasculitis is unknown.
View Article and Find Full Text PDFNatural Killer (NK) cells have recently been recognized as key players in antibody-mediated chronic allograft failure, thus requiring a comprehensive understanding whether NK cells can escape conventional immunosuppressive regimens. Influence of cyclosporine A (CyA) on NK cell function was studied in a mouse model of allogeneic kidney transplantation (KTX, BALB/c to C57BL/6). Recipients were treated daily with CyA (10 mg/kg) for seven or 14 days for long term survival (day 56).
View Article and Find Full Text PDFImmunofluorescence (IF) staining of paraffin-embedded tissues is a frequently used method to answer research questions or even detect the abundance of a certain protein for diagnostic use. However, the signal originating from specific antibody-staining might be distorted by autofluorescence (AF) of the assessed tissue. Although the AF phenomenon is well known, its presence is often neglected by insufficient staining controls.
View Article and Find Full Text PDFNeutrophil gelatinase-associated lipocalin (NGAL) has emerged as an early marker protein for kidney dysfunction in various clinical settings. In this prospective study we evaluated serial changes of serum and urinary NGAL within the first 7 days after kidney transplantation in 170 consecutive recipients. The main focus of this study was to assess the performance of serum and urinary NGAL in the prediction of delayed graft function (DGF) and two-year graft and patient survival.
View Article and Find Full Text PDFBackground: Clinical data suggest that iron disturbances deleteriously affect graft survival after heart transplantation (HTx), but immunological mechanisms underlying this phenomenon have not yet been elucidated.
Methods: To identify the mechanistic influence of iron in a murine model of HTx, fully allogeneic BALB/c donor organs were transplanted into iron-overloaded or iron-deficient C57BL/6 mice, and recipients were analyzed for functional and immunological parameters.
Results: After HTx, iron overload accelerated acute rejection as observed by shortened graft survival (HTx vs HTx + iron; p = 0.
Objective: The aim of study was to investigate whether cell-penetrating peptides could amplify cellular uptake of plasmid DNA (pDNA) loaded self-nanoemulsifying drug delivery systems (SNEDDS) by mucosal epithelial cells, thereby enhancing transfection efficiency.
Methods: HIV-1 Tat peptide-oleoyl conjugate (TAT-OL) was synthesized through amide bond formation between HIV-1 Tat-protein 49-57 (TAT) and oleoyl-chloride (OL). SNEDDS formulation contained 29.
A comparative analysis of inflammation between solid organs following donor brain death (BD) is still lacking and the detailed influence of BD accelerating ischaemia-reperfusion injury (IRI) post-transplantation remains to be addressed. Applying a murine model of BD, we demonstrated that 4 h after BD organs were characterized by distinct inflammatory expression patterns. For instance, lipocalin 2 (LCN2), a marker of acute kidney injury, was selectively induced in BD livers but not in kidneys.
View Article and Find Full Text PDFp66Shc-dependent ROS production contributes to many pathologies including ischemia/reperfusion injury (IRI) during solid organ transplantation. Inhibiting p66Shc activation may provide a novel therapeutic approach to prevent damage, which is poorly managed by antioxidants in vivo. Previous work suggested that pro-oxidant and a pro-apoptotic function of p66Shc required mitochondrial import, which depended on serine 36 phosphorylation.
View Article and Find Full Text PDFMethods to monitor the status of a graft prior to transplantation are highly desirable to avoid unnecessary surgical interventions and follow-up treatments and to optimize the clinical outcome as delayed graft function may lead to costly and lengthy follow-up treatments or even organ loss. As a promising step in this direction we present a method which combines the use of fine needle biopsies, the staining of living cells with dyes suitable to monitor mitochondrial status/cellular integrity, and live confocal real-time analysis.This approach provides information about the functional and structural intactness of an organ within a few minutes.
View Article and Find Full Text PDFProlonged ischemia (I) times caused by organ procurement and transport are main contributors to a decrease in organ function, which is further enhanced during reperfusion (R). This combined damage, referred to as ischemia-reperfusion injury (IRI), is a main contributor to delayed graft function, which leads to costly and lengthy follow-up treatments or even organ loss. Methods to monitor the status of a graft prior to transplantation are therefore highly desirable to optimize the clinical outcome.
View Article and Find Full Text PDFBackground: Many diseases and pathological conditions are characterized by transient or constitutive overproduction of reactive oxygen species (ROS). ROS are causal for ischemia/reperfusion (IR)-associated tissue injury (IRI), a major contributor to organ dysfunction or failure. Preventing IRI with antioxidants failed in the clinic, most likely due to the difficulty to timely and efficiently target them to the site of ROS production and action.
View Article and Find Full Text PDFProtein-protein interactions mediated through the C-terminal Bcl-2-associated athanogene (BAG) domain of BAG-1 are critical for cell survival and proliferation. Thioflavin S (NSC71948)-a mixture of compounds resulting from the methylation and sulfonation of primulin base-has been shown to dose-dependently inhibit the interaction between BAG-1 and Hsc70 in vitro. In human breast cancer cell lines, with high BAG-1 expression levels, Thioflavin S reduces the binding of BAG-1 to Hsc70, Hsp70, or CRAF and decreases proliferation and viability.
View Article and Find Full Text PDFWe have shown previously that mitochondrial ROS production is essential to turn growth factor (GF) removal into cell death. Activated RAF, AKT, Bcl-2 and antioxidants protected equally well against ROS accumulation and subsequent death. Here we investigated whether protection by survival signaling and antioxidants utilizes shared or distinct targets.
View Article and Find Full Text PDFIschemia (I) and reperfusion (R) trigger a series of events, which culminate in severe injury to the transplanted organ. Cell death resulting from the formation of mitochondrial reactive oxygen species (ROS) coupled with the perturbation of mitochondrial Ca2+ homeostasis is central to the development of IR-associated tissue damage. We and others have shown recently that intracellular signaling pathways critically control these mitochondrial changes, making them potential targets for therapeutic intervention.
View Article and Find Full Text PDF