IEEE Trans Image Process
September 2005
An automated method is presented for selecting optimal parameter settings for vessel/neurite segmentation algorithms using the minimum description length principle and a recursive random search algorithm. It trades off a probabilistic measure of image-content coverage against its conciseness. It enables nonexpert users to select parameter settings objectively, without knowledge of underlying algorithms, broadening the applicability of the segmentation algorithm, and delivering higher morphometric accuracy.
View Article and Find Full Text PDFBackground: There is a need for integrative and quantitative methods to investigate the structural and functional relations among elements of complex systems, such as the neurovascular unit (NVU), that involve multiple cell types, microvasculatures, and various genomic/proteomic/ionic functional entities.
Methods: Vascular casting and selective labeling enabled simultaneous three-dimensional imaging of the microvasculature, cell nuclei, and cytoplasmic stains. Multidimensional segmentation was achieved by (i) bleed-through removal and attenuation correction; (ii) independent segmentation and morphometry for each corrected channel; and (iii) spatially associative feature computation across channels.
Automated methods are described for tracing and analysis of changes in angiogenic vasculature imaged by a multiphoton laser-scanning confocal microscope. Utilizing chronic animal window models, time series of in vivo 3-D images were acquired on approximately the same target volume of the same specimen while undergoing angiogenic change (typically every 24 h for 7 days). Objective, precise, 3-D, rapid, and fully automated vessel morphometry was performed using an adaptive tracing algorithm that is based on a generalized irregular cylinder model of the vasculature.
View Article and Find Full Text PDF