Rationale And Objectives: To develop artificial intelligence (AI) system that assists in checking endotracheal tube (ETT) placement on chest X-rays (CXRs) and evaluate whether it can move into clinical validation as a quality improvement tool.
Materials And Methods: A retrospective data set including 2000 de-identified images from intensive care unit patients was split into 1488 for training and 512 for testing. AI was developed to automatically identify the ETT, trachea, and carina using semantically embedded neural networks that combine a declarative knowledge base with deep neural networks.
Purpose: Recent studies have demonstrated a lack of reproducibility of radiomic features in response to variations in CT parameters. In addition, reproducibility of radiomic features has not been well established in clinical datasets. We aimed to investigate the effects of a wide range of CT acquisition and reconstruction parameters on radiomic features in a realistic setting using clinical low dose lung cancer screening cases.
View Article and Find Full Text PDFPurpose: With recent substantial improvements in modern computing, interest in quantitative imaging with CT has seen a dramatic increase. As a result, the need to both create and analyze large, high-quality datasets of clinical studies has increased as well. At present, no efficient, widely available method exists to accomplish this.
View Article and Find Full Text PDF