Sodium-induced potassium (K) deficiency is more prevalent in salt-affected soils. Plants experience K starvation thus cytosolic K/Na ratio is lowered, which is a prerequisite for their survival. K enrichment in crops can be acquired K-solubilizing bacteria as a sustainable green agriculture approach.
View Article and Find Full Text PDFAdaptations of green technologies to counter abiotic stress, including salinity for crops like wheat by using halotolerant microbes, is a promising approach. The current study investigated 17 salt-affected agroecological zones from the Punjab and Sindh provinces of Pakistan to explore the potential of indigenous microbial flora, with their multiple biochemical characteristics in addition to plant growth promoting (PGP) traits, for enhanced wheat production in saline areas. Initially, 297 isolated pure bacterial colonies were screened for salt tolerance, biochemical, and PGP traits.
View Article and Find Full Text PDFSoil salinization and heavy metal (HM) contamination are major challenges facing agricultural systems worldwide. Determining how soil microbial communities respond to these stress factors and identifying individual phylotypes with potential to tolerate these conditions while promoting plant growth could help prevent negative impacts on crop productivity. This study used amplicon sequencing and several bioinformatic programs to characterize differences in the composition and potential functional capabilities of soil bacterial, fungal, and archaeal communities in five agricultural fields that varied in salinity and HM concentrations within the Indus basin region of Pakistan.
View Article and Find Full Text PDFCitrobacter braakii AN-PRR1 is a potential salt-tolerant, plant growth-promoting rice rhizobacterium isolated from Pakistani soil. The 4.9-Mb draft genome sequence contributes to its taxonomic classification and will reveal the genes putatively responsible for its osmoprotectant and plant growth-promoting activity.
View Article and Find Full Text PDF