Salinity stress (SS) is major abiotic stress that is seriously limiting crop production across the globe. The application of organic amendments (OA) mitigate the effects of salinity and improves soil health and crop production on a sustainable basis. However, limited studies are conducted to determine the impact of farmyard manure (FYM) and press mud (PM) on the performance of rice crop.
View Article and Find Full Text PDFNitrogen (N) is an important macro-nutrient required for crop production and is considered an important commodity for agricultural systems. Urea is a vital source of N that is used widely across the globe to meet crop N requirements. However, N applied in the form of urea is mostly lost in soil, posing serious economic and environmental issues.
View Article and Find Full Text PDFSalinity stress (SS) is a challenging abiotic stress that limits crop growth and productivity. Sustainable and cost effective methods are needed to improve crop production and decrease the deleterious impacts of SS. Zinc (Zn) nano-particles (NPs) have emerged as an important approach to regulating plant tolerance against SS.
View Article and Find Full Text PDFSalt stress is one of the leading threats to crop growth and productivity across the globe. Salt stress induces serious alterations in plant physiological, metabolic, biochemical functioning and it also disturbs antioxidant activities, cellular membranes, photosynthetic performance, nutrient uptake and plant water uptake and resulting in a significant reduction in growth and production. The application of osmoprotectants is considered as an important strategy to induce salt tolerance in plants.
View Article and Find Full Text PDFSalinity stress is one of the major global problems that negatively affect crop growth and productivity. Therefore, ecofriendly and sustainable strategies for mitigating salinity stress in agricultural production and global food security are highly demandable. Sugarcane press mud (PM) is an excellent source of the organic amendment, and the role of PM in mitigating salinity stress is not well understood.
View Article and Find Full Text PDFBackground: Salinity stress (SS) is a serious detrimental factor for crop growth and productivity and its intensity it is continuously increasing which is posing serious threat to global food security. Hydrogen peroxide (HO) priming has emerged as an excellent strategy to mitigate the adverse impacts of SS. However, the role of HO priming in mitigating the salinity induced toxicity is not fully explored.
View Article and Find Full Text PDFCold stress is one of the most limiting factors for plant growth and development. Cold stress adversely affects plant physiology, molecular and biochemical processes by determining oxidative stress, poor nutrient and water uptake, disorganization of cellular membranes and reduced photosynthetic efficiency. Therefore, to recover impaired plant functions under cold stress, the application of bio-stimulants can be considered a suitable approach.
View Article and Find Full Text PDFCadmium (Cd) toxicity is a serious environmental issue causing a significant reduction in crop growth and productivity globally. Trehalose (Tre) has emerged as an important reducing sugar that can reduce the adverse impacts of different abiotic stresses. Therefore, the present investigation was performed to determine the key role of Tre in alleviating Cd stress in the mung bean ( L.
View Article and Find Full Text PDFNickel (Ni) is a naturally occurring metal, but anthropogenic activities such as industrialization, use of fertilizers, chemicals, and sewage sludge have increased its concentration in the environment up to undesirable levels. Ni is considered to be essential for plant growth at low concentration; however, Ni pollution is increasing in the environment, and therefore, it is important to understand its functional roles and toxic effects on plants. This review emphasizes the environmental sources of Ni, its essentiality, effects, tolerance mechanisms, possible remediation approaches, and research direction that may help in interdisciplinary studies to assess the significance of Ni toxicity.
View Article and Find Full Text PDFBiomass is a promising renewable energy source and its significance is escalating in the context of climate change and depletion of fossil foils. This study was conducted for two consecutive years 2016 and 2017, using five sorghum cultivars, i.e.
View Article and Find Full Text PDF