Publications by authors named "Muhammad Tausif Irshad"

Parkinson's disease is characterized by motor and cognitive deficits. While previous work suggests a relationship between both, direct empirical evidence is scarce or inconclusive. Therefore, we examined the relationship between walking features and executive functioning in patients with Parkinson's disease using state-of-the-art machine learning approaches.

View Article and Find Full Text PDF

Signal quality significantly affects the processing, analysis, and interpretation of biomedical signals. There are many procedures for assessing signal quality that use averaged numerical values, thresholding, analysis in the time or frequency domain, or nonlinear approaches. An interesting approach to the assessment of signal quality is using symmetric projection attractor reconstruction (SPAR) analysis, which transforms an entire signal into a two-dimensional plot that reflects the waveform morphology.

View Article and Find Full Text PDF

Machine learning with deep neural networks (DNNs) is widely used for human activity recognition (HAR) to automatically learn features, identify and analyze activities, and to produce a consequential outcome in numerous applications. However, learning robust features requires an enormous number of labeled data. Therefore, implementing a DNN either requires creating a large dataset or needs to use the pre-trained models on different datasets.

View Article and Find Full Text PDF

Background: Flow experience is a specific positive and affective state that occurs when humans are completely absorbed in an activity and forget everything else. This state can lead to high performance, well-being, and productivity at work. Few studies have been conducted to determine the human flow experience using physiological wearable sensor devices.

View Article and Find Full Text PDF

Sleep is an important research area in nutritional medicine that plays a crucial role in human physical and mental health restoration. It can influence diet, metabolism, and hormone regulation, which can affect overall health and well-being. As an essential tool in the sleep study, the sleep stage classification provides a parsing of sleep architecture and a comprehensive understanding of sleep patterns to identify sleep disorders and facilitate the formulation of targeted sleep interventions.

View Article and Find Full Text PDF

To drive safely, the driver must be aware of the surroundings, pay attention to the road traffic, and be ready to adapt to new circumstances. Most studies on driving safety focus on detecting anomalies in driver behavior and monitoring cognitive capabilities in drivers. In our study, we proposed a classifier for basic activities in driving a car, based on a similar approach that could be applied to the recognition of basic activities in daily life, that is, using electrooculographic (EOG) signals and a one-dimensional convolutional neural network (1D CNN).

View Article and Find Full Text PDF

The analysis of sleep stages for children plays an important role in early diagnosis and treatment. This paper introduces our sleep stage classification method addressing the following two challenges: the first is the data imbalance problem, i.e.

View Article and Find Full Text PDF

The perception of hunger and satiety is of great importance to maintaining a healthy body weight and avoiding chronic diseases such as obesity, underweight, or deficiency syndromes due to malnutrition. There are a number of disease patterns, characterized by a chronic loss of this perception. To our best knowledge, hunger and satiety cannot be classified using non-invasive measurements.

View Article and Find Full Text PDF

More and more teams are collaborating virtually across the globe, and the COVID-19 pandemic has further encouraged the dissemination of virtual teamwork. However, there are challenges for virtual teams - such as reduced informal communication - with implications for team effectiveness. Team flow is a concept with high potential for promoting team effectiveness, however its measurement and promotion are challenging.

View Article and Find Full Text PDF

General movements (GMs) are spontaneous movements of infants up to five months post-term involving the whole body varying in sequence, speed, and amplitude. The assessment of GMs has shown its importance for identifying infants at risk for neuromotor deficits, especially for the detection of cerebral palsy. As the assessment is based on videos of the infant that are rated by trained professionals, the method is time-consuming and expensive.

View Article and Find Full Text PDF