Plants in nature are under the persistent intimidation of severe microbial diseases, threatening a sustainable food production system. Plant-bacterial pathogens are a major concern in the contemporary era, resulting in reduced plant growth and productivity. Plant antibiotics and chemical-based bactericides have been extensively used to evade plant bacterial diseases.
View Article and Find Full Text PDFJ Integr Plant Biol
November 2021
Phytopathogenic fungi secrete a large arsenal of effector molecules, including proteinaceous effectors, small RNAs, phytohormones and derivatives thereof. The pathogenicity of fungal pathogens is primarily determined by these effectors that are secreted into host cells to undermine innate immunity, as well as to facilitate the acquisition of nutrients for their in planta growth and proliferation. After conventional and non-conventional secretion, fungal effectors are translocated into different subcellular compartments of the host cells to interfere with various biological processes.
View Article and Find Full Text PDFNematodes as plant pathogens adversely affect food, fiber, and biofuels production by causing plant diseases. A variety of chemical nematicides are being applied to soil, seeds, or foliage with a goal of disease prevention. Despite the proven efficacy of these chemicals against plant-parasitic nematodes, factors like prolonged residual toxicity to human health, environmental pollution, and the risk of resistance development can't be neglected.
View Article and Find Full Text PDFFalse smut of rice, caused by , has become one of the most important diseases in rice-growing regions worldwide. The disease causes a significant yield loss and imposes health threats to humans and animals by producing mycotoxins. In this review, we update our understanding of the pathogen, including the disease cycle and infection strategies, the decoding of the genome, comparative/functional genomics, and effector biology.
View Article and Find Full Text PDFA greenhouse experiment was conducted to evaluate the effects of different inoculum densities of two Saudi isolates of Trichoderma harzianum and Trichoderma viride against Meloidogyne javanica on tomato. Four densities (10(4), 10(6), 10(8) and 10(10) spores/g of soil) of each fungus were used. The results indicate that all four inoculum densities of the two Trichoderma species suppressed the nematode reproduction and root galling; and increased the growth of tomato plants, compared to controls.
View Article and Find Full Text PDF