Paleoneurology reconstructs the evolutionary history of nervous systems through direct observations from the fossil record and comparative data from extant species. Although this approach can provide direct evidence of phylogenetic links among species, it is constrained by the availability and quality of data that can be gleaned from the fossil record. Here, we sought to translate brain component relationships in a sample of extant Carnivora to make inferences about brain structure in fossil species.
View Article and Find Full Text PDFThe evolutionary history of canids and felids is marked by a deep time separation that has uniquely shaped their behavior and phenotype toward refined predatory abilities. The caudate nucleus is a subcortical brain structure associated with both motor control and cognitive, emotional, and executive functions. We used a combination of three-dimensional imaging, allometric scaling, and structural analyses to compare the size and shape characteristics of the caudate nucleus.
View Article and Find Full Text PDFThe orexinergic/hypocretinergic system, while having several roles, appears to be a key link in the balance between arousal and food intake. In birds, to date, this system has only been examined anatomically in four species, all with brains smaller than 3.5 g and of limited phylogenetic range.
View Article and Find Full Text PDFIntroduction: Felids have evolved a specialized suite of morphological adaptations for obligate carnivory. Although the musculoskeletal anatomy of the Felidae has been studied extensively, the comparative neuroanatomy of felids is relatively unexplored. Little is known about how variation in the cerebral anatomy of felids relates to species-specific differences in sociality, hunting strategy, or activity patterns.
View Article and Find Full Text PDFBackground: Cortical folding is related to the functional organization of the brain. The TMF-1 regulated protein (TRNP1) regulates the expansion and folding of the mammalian cerebral cortex, a process that may have been accelerated by the domestication of dogs. The objectives of this study were to sequence the TRNP1 gene in dogs and related canid species, provide evidence of its expression in dog brain and compare the genetic variation within dogs and across the Canidae.
View Article and Find Full Text PDFEmploying orexin-A immunohistochemistry, we describe the distribution, morphology, and nuclear parcellation of orexinergic neurons within the hypothalami of an Asiatic lion (Panthera leo subsp. persica), an African lion (Panthera leo subsp. melanochaita), and a Southeast African cheetah (Acinonyx jubatus subsp.
View Article and Find Full Text PDFHuntington's disease is an autosomal dominant trinucleotide repeat disorder that causes the progressive degeneration of the basal nuclei. This degeneration leads to clinical symptoms affecting voluntary movement, cognitive impairment, and psychiatric disorders. The patient affected by this disease demonstrates anticipation, meaning that even though there is normal embryological development, the signs and symptoms appear at an earlier age as the gene is continually passed throughout subsequent generations.
View Article and Find Full Text PDFThe pelvis and the skull are the two most utilised skeletal elements to estimate sex from skeletonised remains due to their sexually dimorphic traits. However, as increasingly more fragmented remains have been presented for analyses, other bones and their fragments have now been subjected to analyses for sex estimation. In the skull particularly, the base has shown to survive harsh conditions.
View Article and Find Full Text PDFThe 2021 meetings of the J.B. Johnston Club for Evolutionary Neuroscience and Karger Workshop in Evolutionary Neuroscience is typically held immediately before the annual meeting of the Society for Neuroscience.
View Article and Find Full Text PDFIn the current study, we examined the number, distribution, and aspects of the neurochemical identities of infracortical white matter neurons, also termed white matter interstitial cells (WMICs), in the brains of a southern lesser galago (Galago moholi), a black-capped squirrel monkey (Saimiri boliviensis boliviensis), and a crested macaque (Macaca nigra). Staining for neuronal nuclear marker (NeuN) revealed WMICs throughout the infracortical white matter, these cells being most dense close to inner cortical border, decreasing in density with depth in the white matter. Stereological analysis of NeuN-immunopositive cells revealed estimates of approximately 1.
View Article and Find Full Text PDFTo elucidate factors underlying the evolution of large brains in cetaceans, we examined 16 brains from 14 cetartiodactyl species, with immunohistochemical techniques, for evidence of non-shivering thermogenesis. We show that, in comparison to the 11 artiodactyl brains studied (from 11 species), the 5 cetacean brains (from 3 species), exhibit an expanded expression of uncoupling protein 1 (UCP1, UCPs being mitochondrial inner membrane proteins that dissipate the proton gradient to generate heat) in cortical neurons, immunolocalization of UCP4 within a substantial proportion of glia throughout the brain, and an increased density of noradrenergic axonal boutons (noradrenaline functioning to control concentrations of and activate UCPs). Thus, cetacean brains studied possess multiple characteristics indicative of intensified thermogenetic functionality that can be related to their current and historical obligatory aquatic niche.
View Article and Find Full Text PDFOnce considered a hallmark of human uniqueness, brain asymmetry has emerged as a feature shared with several other species, including chimpanzees, one of our closest living relatives. Most notable has been the discovery of asymmetries in homologues of cortical language areas in apes, particularly in the planum temporale (PT), considered a central node of the human language network. Several lines of evidence indicate a role for genetic mechanisms in the emergence of PT asymmetry; however, the genetic determinants of cerebral asymmetries have remained elusive.
View Article and Find Full Text PDFEmploying a range of neuroanatomical stains, we detail the organization of the main and accessory olfactory systems of the African wild dog. The organization of both these systems follows that typically observed in mammals, but variations of interest were noted. Within the main olfactory bulb, the size of the glomeruli, at approximately 350 μm in diameter, are on the larger end of the range observed across mammals.
View Article and Find Full Text PDFThe variegated pelage and social complexity of the African wild dog (Lycaon pictus) hint at the possibility of specializations of the visual system. Here, using a range of architectural and immunohistochemical stains, we describe the systems-level organization of the image-forming, nonimage forming, oculomotor, and accessory optic, vision-associated systems in the brain of one representative individual of the African wild dog. For all of these systems, the organization, in terms of location, parcellation and topology (internal and external), is very similar to that reported in other carnivores.
View Article and Find Full Text PDFThe African wild dog is endemic to sub-Saharan Africa and belongs to the family Canidae which includes domestic dogs and their closest relatives (i.e., wolves, coyotes, jackals, dingoes, and foxes).
View Article and Find Full Text PDFThe large external pinnae and extensive vocal repertoire of the African wild dog (Lycaon pictus) has led to the assumption that the auditory system of this unique canid may be specialized. Here, using cytoarchitecture, myeloarchitecture, and a range of immunohistochemical stains, we describe the systems-level anatomy of the auditory system of the African wild dog. We observed the cochlear nuclear complex, superior olivary nuclear complex, lateral lemniscus, inferior colliculus, medial geniculate body, and auditory cortex all being in their expected locations, and exhibiting the standard subdivisions of this system.
View Article and Find Full Text PDFOver the last 15 years, research on canid cognition has revealed that domestic dogs possess a surprising array of complex sociocognitive skills pointing to the possibility that the domestication process might have uniquely altered their brains; however, we know very little about how evolutionary processes (natural or artificial) might have modified underlying neural structure to support species-specific behaviors. Evaluating the degree of cortical folding (i.e.
View Article and Find Full Text PDFThe present study examines cortical neuronal morphology in the African lion (Panthera leo leo), African leopard (Panthera pardus pardus), and cheetah (Acinonyx jubatus jubatus). Tissue samples were removed from prefrontal, primary motor, and primary visual cortices and investigated with a Golgi stain and computer-assisted morphometry to provide somatodendritic measures of 652 neurons. Although neurons in the African lion were insufficiently impregnated for accurate quantitative dendritic measurements, descriptions of neuronal morphologies were still possible.
View Article and Find Full Text PDFThe brainstem (midbrain, pons, and medulla oblongata) and cerebellum (diencephalic prosomere 1 through to rhombomere 11) play central roles in the processing of sensorimotor information, autonomic activity, levels of awareness and the control of functions external to the conscious cognitive world of mammals. As such, comparative analyses of these structures, especially the understanding of specializations or reductions of structures with functions that have been elucidated in commonly studied mammalian species, can provide crucial information for our understanding of the behavior of less commonly studied species, like pangolins. In the broadest sense, the nuclear complexes and subdivisions of nuclear complexes, the topographical arrangement, the neuronal chemistry, and fiber pathways of the tree pangolin conform to that typically observed across more commonly studied mammalian species.
View Article and Find Full Text PDFRelatively little neuroscience research has been focused on artiodactyls. Recent observations of complex social interactions in domestic and wild species suggest that analyses of artiodactyl brain anatomy would be of comparative value. In this study, we examined how the distribution of cortical neuropil space (a proxy for connectivity) varies across representative members of this diverse clade.
View Article and Find Full Text PDFAll domesticated mammals exhibit marked reductions in overall brain size, however, it is unknown whether the corpus callosum (CC), an integral white matter fiber pathway for interhemispheric cortical communication, is affected by domestication differentially or strictly in coordination with changes in brain size. To answer this question, we used quantitative magnetic resonance imaging to compare the midsagittal cross-sectional areas of the CC in 35 carnivore species, including eight wild canids and 13 domestic dogs. We segmented rostro-caudal regions of interest for the CC and evaluated correlations with brain mass.
View Article and Find Full Text PDFWe examined the effect of chronic prenatal alcohol exposure (PAE) on the process of adult neurogenesis in C57BL/6J mice at early adulthood (PND 56). Pregnant mice, and their in utero litters, were exposed to alcohol, through oral gavage, on gestational days 7-16, with recorded blood alcohol concentrations averaging 184 mg/dL (CA group). Two control groups, sucrose (CAc) and non-treated (NTc) control groups were also examined.
View Article and Find Full Text PDFThe current study analyzed the nuclear organization of the neural systems related to the control and regulation of sleep and wake in the basal forebrain, diencephalon, midbrain, and pons of the minke whale, a mysticete cetacean. While odontocete cetaceans sleep in an unusual manner, with unihemispheric slow wave sleep (USWS) and suppressed REM sleep, it is unclear whether the mysticete whales show a similar sleep pattern. Previously, we detailed a range of features in the odontocete brain that appear to be related to odontocete-type sleep, and here present our analysis of these features in the minke whale brain.
View Article and Find Full Text PDF