Publications by authors named "Muhammad Sher Afgan"

High signal uncertainty has been regarded as a critical obstacle for the quantitative analysis of laser-induced breakdown spectroscopy (LIBS). One of the most effective ways for uncertainty reduction is to directly compensate for the variation of plasma properties, especially total number density. However, reliable compensation for the variation of total number density is hard to implement.

View Article and Find Full Text PDF

Laser-induced breakdown spectroscopy (LIBS) is a promising multi-elemental analysis technique and has the advantages of rapidness and minimal sample preparation. In traditional LIBS measurement, sample spectra are generally collected based on a single set of fixed experimental parameters, such as laser energy and delay time. When samples have the same main components and similar component concentrations, the difference in their spectral intensities becomes less obvious.

View Article and Find Full Text PDF

Repeatability is of utmost importance as it is directly linked to measurement accuracy and precision of a technique and affects its cost, utility, and commercialization. The present paper contributes to explain enhanced repeatability of the femtosecond laser-induced breakdown spectroscopy (fs-LIBS) technique, remarkably significant for its industrial applications and instrumental size reduction. A fs-laser with 7 mJ pulse energy was focused to create a transient titanium plasma, and a high-resolution spectrometer was used to study time-resolved spectra and single-shot drilling sampling repeatability.

View Article and Find Full Text PDF