Publications by authors named "Muhammad Shafiq Bin Mohd Yusof"

A unified picture of the electronic relaxation dynamics of ionized liquid water has remained elusive despite decades of study. Here, we employ sub-two-cycle visible to short-wave infrared pump-probe spectroscopy and ab initio nonadiabatic molecular dynamics simulations to reveal that the excess electron injected into the conduction band (CB) of ionized liquid water undergoes sequential relaxation to the hydrated electron s ground state via an intermediate state, identified as the elusive p excited state. The measured CB and p-electron lifetimes are 0.

View Article and Find Full Text PDF

Proton transfer (PT) reactions are fundamental to numerous chemical and biological processes. While sub-picosecond PT involving electronically excited states has been extensively studied, little is known about ultrafast PT triggered by photoionization. Here, we employ femtosecond optical pump-probe spectroscopy and quantum dynamics calculations to investigate the ultrafast proton transfer dynamics of the aqueous phenol radical cation (PhOH˙).

View Article and Find Full Text PDF

The phenylalanine radical (Phe˙) has been proposed to mediate biological electron transport (ET) and exhibit long-lived electronic coherences following attosecond photoionization. However, the coupling of ultrafast structural reorganization to the oxidation/ionization of biomolecules such as phenylalanine remains unexplored. Moreover, studies of ET involving Phe˙ are hindered by its hitherto unobserved electronic spectrum.

View Article and Find Full Text PDF

The study of the photodetachment of amino acids in aqueous solution is pertinent to the understanding of elementary processes that follow the interaction of ionizing radiation with biological matter. In the case of tryptophan, the tryptophan radical that is produced by electron ejection also plays an important role in numerous redox reactions in biology, although studies of its ultrafast molecular dynamics are limited. Here, we employ femtosecond optical pump-probe spectroscopy to elucidate the ultrafast structural rearrangement dynamics that accompany the photodetachment of the aqueous tryptophan anion by intense, ∼5-fs laser pulses.

View Article and Find Full Text PDF

Correction for 'Ultrafast vibrational wave packet dynamics of the aqueous tyrosyl radical anion induced by photodetachment' by Muhammad Shafiq Bin Mohd Yusof , , 2021, , 18525-18534, DOI: 10.1039/D1CP02975D.

View Article and Find Full Text PDF

The ultrafast dynamics triggered by the photodetachment of the tyrosinate dianion in aqueous environment shed light on the elementary processes that accompany the interaction of ionizing radiation with biological matter. Photodetachment of the tryosinate dianion yields the tyrosyl radical anion, an important intermediate in biological redox reactions, although the study of its ultrafast dynamics is limited. Here, we utilize femtosecond optical pump-probe spectroscopy to investigate the ultrafast structural reorganization dynamics that follow the photodetachment of the tyrosinate dianion in aqueous solution.

View Article and Find Full Text PDF

The elementary processes that accompany the interaction of ionizing radiation with biologically relevant molecules are of fundamental importance. However, the ultrafast structural rearrangement dynamics induced by the ionization of biomolecules in aqueous solution remain hitherto unknown. Here, we employ femtosecond optical pump-probe spectroscopy to elucidate the vibrational wave packet dynamics that follow the photodetachment of phenoxide, a structural mimic of tyrosine, in aqueous solution.

View Article and Find Full Text PDF