Pulp-Dentin regeneration is a key aspect of maintain tooth vitality and enabling good oral-systemic health. This study aimed to investigate a nanofibrous scaffold loaded with a small molecule i.e.
View Article and Find Full Text PDFImplantation of biomaterials capable of the controlled release of antibacterials during articular cartilage repair may prevent postoperative infections. Herein, biomaterials are prepared with biomimetic architectures (nonwoven mats of fibers) via electrospinning that are composed of poly(ɛ-caprolactone), poly(lactic acid), and Bombyx mori silk fibroin (with varying ratios) and, optionally, an antibiotic drug (cefixime trihydrate). The composition, morphology, and mechanical properties of the nanofibrous mats are characterized using scanning electron microscope, Fourier transform infrared spectroscopy, and tensile testing.
View Article and Find Full Text PDFBackground: Incoherent use of antibiotics has led toward resistance in MRSA, becoming multidrug-resistant with a high rate of virulence in the community and hospital settings.
Objective: Synergistic anti-MRSA activity was investigated in this study for hybrid material composite spheres of amoxicillin, Ag nanoparticles, and chitosan, which were prepared by one-step synthesis method, and various characterizations were performed.
Methods: Antimicrobial-susceptibility assay on MRSA was achieved by disc diffusion and agar dilution techniques, while agar well diffusion was used for hybrid composite spheres.
Mater Sci Eng C Mater Biol Appl
August 2019
With an increase in the demand for skin regeneration products, there is a noticeable increase in developing materials that encourage, wound healing and skin regeneration. It has been reported that antioxidants play an important role in anti-inflammatory reactions, cellular proliferation and remodeling phase of wound healing. While consideration all these factors, a novel α-tocopherol acetate (vitamin E) (VE) loaded bi-layered electrospun membrane, based on lower polycaprolactone (PCL) layer and upper polylactic acid (PLA) layer, was fabricated through electrospinning.
View Article and Find Full Text PDFObjectives: Levosulpiride is a widely used gastroprokinetic agent in the treatment of various gastric disorders; however, its short half-life and increased dosage frequency leads to non-compliance and possible adverse effects. The prime objective of the current study was to develop a sustained-release formulation of Levosulpiride incorporating bioresorbable cellulose derivatives.
Materials And Methods: Sustained-release formulations of Levosulpiride were prepared through direct compression using various cellulose derivatives such as CMC sodium, HPC, and HPMC in different polymer-to-drug weight ratios as release-modifying polymers.