Maintenance of plant physiological functions under drought stress is normally considered a positive feature as it indicates sustained plant health and growth. This study was conducted to investigate whether plant growth-promoting rhizobacteria (PGPR) Bacillus subtilis HAS31 has potential to maintain potato growth and yield under drought stress. We analyzed trends of chlorophyll concentration, photosynthesis process, relative water content, osmolytes, antioxidants enzymes and oxidative stress, relative growth rate, tuber and aboveground biomass production in two potato varieties, Santae (drought-tolerant) and PRI-Red (drought-sensitive).
View Article and Find Full Text PDFPlants (Basel)
February 2020
The present experiment was carried out to study the influences of exogenously-applied nitric oxide (NO) donor sodium nitroprusside (SNP) and hydrogen peroxide (HO) as seed primers on growth and yield in relation with different physio-biochemical parameters, antioxidant activities, and osmolyte accumulation in wheat plants grown under control (100% field capacity) and water stress (60% field capacity) conditions. During soaking, the seeds were covered and kept in completely dark. Drought stress markedly reduced the plant growth, grain yield, leaf photosynthetic pigments, total phenolic content (TPC), total soluble proteins (TSP), leaf water potential (Ψ), leaf turgor potential (Ψ), osmotic potential (Ψ), and leaf relative water content (LRWC), while it increased the activities of enzymatic antioxidants and the accumulation of leaf ascorbic acid (AsA), proline (Pro), glycine betaine (GB), malondialdehyde (MDA), and HO.
View Article and Find Full Text PDFCoincidence of high temperature with terminal reproductive pheno-stages of cotton is chief constraint to achieve yield potential. This high temperature interfere plant defensive system, physiological process, water relations and lint yield production. In this study, we modulated the detrimental outcomes of heat stress on cotton through the foliar spray of nutrients.
View Article and Find Full Text PDFA correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.
View Article and Find Full Text PDFA pot experiment was performed to examine the role of foliar applied mannitol (M) in chromium (Cr) stress alleviation in different maize cultivars. Two maize cultivars, one tolerant (6103) and one sensitive (9108) to chromium stress, were grown in soil treated with three concentrations of Cr (0, 5, and 10 mg kg) and three levels of mannitol (0, 50, and 100 mg L). Chromium stress decreased the overall growth of plants by reducing the plant height, root/shoot dry weight, chlorophyll contents, and enzymatic activities, while exacerbated the severity of reactive oxygen species in both maize cultivars.
View Article and Find Full Text PDFEpisodes of extremely high temperature during reproductive stages of cotton crops are common in many parts of the world. Heat stress negatively influences plant growth, physiology and ultimately lint yield. This study attempts to modulate heat-induced damage to cotton crops via application of growth regulators e.
View Article and Find Full Text PDF