Publications by authors named "Muhammad Raziq Rahimi Kooh"

In this study, density functional theory (DFT) was used to investigate the influence of temperature on the performance of a novel Cu-nitrogen-doped graphene Cu-N/Gr nanocomposite as a catalyst for the oxygen reduction reaction (ORR) in fuel cell applications. Our DFT calculations, conducted using Gaussian 09w with the 3-21G/B3LYP basis set, focus on the Cu-nitrogen-doped graphene nanocomposite cathode catalyst, exploring its behavior at three distinct temperatures: 298.15 K, 353.

View Article and Find Full Text PDF

Novel Cu-nitrogen doped graphene nanocomposite catalysts are developed to investigate the Cu-nitrogen doped fuel cell cathode catalyst. Density functional theory calculations are performed using Gaussian 09w software to study the oxygen reduction reaction (ORR) on Cu-nitrogen doped graphene nanocomposite cathode catalyst in low-temperature fuel cells. Three different nanocomposite structures Cu-N/Gr, Cu-N/Gr and Cu-N/Gr were considered in the acidic medium under standard conditions (298.

View Article and Find Full Text PDF

Multiple resonance modes in an optical absorber are necessary for nanophotonic devices and encounter a challenge in the visible range. This article designs a multiple-channel plasmonic metamaterial absorber (PMA) that comprises a hexagonal arrangement of metal-shell nanorods in a unit cell over a continuous thin metal layer, operating in the visible range of the sensitive refractive index (RI) and temperature applications. Finite element method simulations are utilized to investigate the physical natures, such as the absorptance spectrum, magnetic flux and surface charge densities, electric field intensity, and electromagnetic power loss density.

View Article and Find Full Text PDF

The present study explores the CO adsorption properties with graphene, tungsten oxide/graphene composite, and Cr-doped tungsten oxide/graphene composite using density functional theory (DFT) calculations. The results of the study reveal the Cr-doped tungsten oxide/graphene composites, g-CrW O ( = 2 to 4), to have a lowered highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) energy gap, high surface reactivity, and a strong cluster-graphene binding energy, hence exhibiting a strong adsorption interaction with CO. The CO adsorption interaction shows physisorption properties by having a greater tendency for Mulliken and natural bond orbital (NBO) charge transfer supported by a strong physisorption interaction toward the g-CrW O ( = 2 to 4) composite with HOMO-LUMO energy gaps of -0.

View Article and Find Full Text PDF

This study proposes a compact plasmonic metal-insulator-metal pressure sensor comprising a bus waveguide and a resonator, including one horizontal slot and several stubs. We calculate the transmittance spectrum and the electromagnetic field distribution using the finite element method. When the resonator's top layer undergoes pressure, the resonance wavelength redshifts with increasing deformation, and their relation is nearly linear.

View Article and Find Full Text PDF

Herein, we design a high sensitivity with a multi-mode plasmonic sensor based on the square ring-shaped resonators containing silver nanorods together with a metal-insulator-metal bus waveguide. The finite element method can analyze the structure's transmittance properties and electromagnetic field distributions in detail. Results show that the coupling effect between the bus waveguide and the side-coupled resonator can enhance by generating gap plasmon resonance among the silver nanorods, increasing the cavity plasmon mode in the resonator.

View Article and Find Full Text PDF

This work proposed a multiple mode Fano resonance-based refractive index sensor with high sensitivity that is a rarely investigated structure. The designed device consists of a metal-insulator-metal (MIM) waveguide with two rectangular stubs side-coupled with an elliptical resonator embedded with an air path in the resonator and several metal defects set in the bus waveguide. We systematically studied three types of sensor structures employing the finite element method.

View Article and Find Full Text PDF

A plasmonic metal-insulator-metal waveguide filter consisting of one rectangular cavity and three silver baffles is numerically investigated using the finite element method and theoretically described by the cavity resonance mode theory. The proposed structure shows a simple shape with a small number of structural parameters that can function as a plasmonic sensor with a filter property, high sensitivity and figure of merit, and wide bandgap. Simulation results demonstrate that a cavity with three silver baffles could significantly affect the resonance condition and remarkably enhance the sensor performance compared to its counterpart without baffles.

View Article and Find Full Text PDF

We numerically and theoretically investigate a highly sensitive and tunable plasmonic refractive index sensor that is composed of a metal-insulator-metal waveguide with a side-coupled nanoring, containing silver nanorods using the finite element method. Results reveal that the presence of silver nanorods in the nanoring has a significant impact on sensitivity and tunability performance. It gives a flexible way to tune the system response in the proposed structure.

View Article and Find Full Text PDF

Plasmonic effect using a cross-hair can convey strongly localized surface plasmon modes among the separated composite nanostructures. Compared to its counterpart without the cross-hair, this characteristic has the remarkable merit of enhancing absorptance at resonance and can make the structure carry out a dual-band plasmonic perfect absorber (PPA). In this paper, we propose and design a novel dual-band PPA with a gathering of four metal-shell nanorods using a cross-hair operating at visible and near-infrared regions.

View Article and Find Full Text PDF

This study investigated the potential of Azolla pinnata (AP) in the removal of toxic methyl violet 2B (MV) dye wastewater using the phytoextraction approach with the inclusion of an Artificial Neural Network (ANN) modelling. Parameters examined included the effects of dye concentration, pH and plant dosage. The highest removal efficiency was 93% which was achieved at a plant dosage of 0.

View Article and Find Full Text PDF

This study investigated the potential of untreated Azolla pinnata (AP) to remove toxic rhodamine B (RB) dye. The effects of adsorbent dosage, pH, ionic strength, contact time, and concentration were studied. Experiments involving the effects of pH and ionic strength indicated that hydrophobic-hydrophobic interactions might be the dominant force of attraction for the RB-AP adsorption system.

View Article and Find Full Text PDF