The current commercial technologies used to produce heavy oils and bitumen are carbon-, energy-, and wastewater-intensive. These make them to be out of line with the global efforts of decarbonisation. Alternative processes such as the toe-to-heel air injection (THAI) that works as an in situ combustion process that uses horizontal producer well to recover partially upgraded oil from heavy oils and bitumen reservoirs are needed.
View Article and Find Full Text PDFHeavy oils and bitumen are indispensable resources for a turbulent-free transition to a decarbonized global energy and economic system. This is because according to the analysis of the International Energy Agency's 2020 estimates, the world requires up to 770 billion barrels of oil from now to year 2040. However, BP's 2020 statistical review of world energy has shown that the global total reserves of the cheap-to-produce conventional oil are roughly only 520.
View Article and Find Full Text PDFWhile simulating toe-to-heel air injection (THAI), which is a variant of conventional in situ combustion that uses a horizontal producer well to recover mobilized partially upgraded heavy oil, the chemical kinetics is one of the main sources of uncertainty because the hydrocarbon must be represented by the use of oil pseudo-components. There is, however, no study comparing the predictive capability of the different kinetics schemes used to simulate the THAI process. From the literature, it was determined that the thermal cracking kinetics schemes can be broadly divided into two: split and direct conversion schemes.
View Article and Find Full Text PDF