IEEE Trans Ultrason Ferroelectr Freq Control
May 2021
The impact of Pb on the environment and human health and recent restrictions on its use in electronic devices are generating demand for Pb-free piezoelectric materials. Examples are now available commercially, but the full elastic-piezoelectric-dielectric (EPD) matrices needed for device design, including over a range of operating conditions, have not yet been published. The standard IEEE EPD matrix measurement method needs four sample geometries, making it inconvenient and increasing errors.
View Article and Find Full Text PDFPiezocrystals, especially the relaxor-based ferroelectric crystals, have been subject to intense investigation and development within the past three decades, motivated by the performance advantages offered by their ultrahigh piezoelectric coefficients and higher electromechanical coupling coefficients than piezoceramics. Structural anisotropy of piezocrystals also provides opportunities for devices to operate in novel vibration modes, such as the face shear mode, with domain engineering and special crystal cuts. These piezocrystal characteristics contribute to their potential usage in a wide range of low- and high-power ultrasound applications.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
March 2015
Ultrasonic scalpels based on the conventional mass-spring configuration of piezoelectric transducers are widely used in procedures such as oral, hepatic, and pancreatic surgery. However, the weight and self-heating of this configuration are weaknesses. To address these, an alternative approach can be adopted which utilizes a planar configuration of a cutting blade to which piezoelectric drive components are bonded directly.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
September 2011
Piezoelectric single crystal materials such as (x)Pb(Mg(1/3)Nb(2/3))O(3-)(1-x)PbTiO(3) (PMN-PT) have, by some measures, significantly better performance than established piezoelectric ceramics for ultrasound applications. However, they are also subject to phase transitions affecting their behavior at temperatures and pressures encountered in underwater sonar and actuator applications and in non-destructive testing at elevated temperatures. Materials with modified compositions to reduce these problems are now under development, but application-oriented characterization techniques need further attention.
View Article and Find Full Text PDF