Additive manufacturing (AM), an enabler of Industry 4.0, recently opened limitless possibilities in various sectors covering personal, industrial, medical, aviation and even extra-terrestrial applications. Although significant research thrust is prevalent on this topic, a detailed review covering the impact, status, and prospects of artificial intelligence (AI) in the manufacturing sector has been ignored in the literature.
View Article and Find Full Text PDFElectro-discharge machining (EDM) removes electrically conductive materials by high frequency spark discharges between the tool electrode and the workpiece in the presence of a dielectric liquid. Being an electrothermal process and with melting and evaporation being the mechanisms of material removal, EDM suffers from migration of materials between the tool and the workpiece. Although unwanted surface modification was considered a challenge in the past for many applications, this inherent nature of the EDM process has recently become of interest to the scientific community.
View Article and Find Full Text PDFNon-conductive structural ceramics are receiving ever-increasing attention due to their outstanding physical and mechanical properties and their critical applications in aerospace and biomedical industries. However, conventional mechanical machining seems infeasible for the machining of these superior ceramics due to their extreme brittleness and higher hardness. Electro discharge machining (EDM), well known for its machining of electrically conductive materials irrespective of materials hardness, has emerged as a potential machining technique due to its noncontact nature when complemented with an assistive electrode technique.
View Article and Find Full Text PDFMachined surface quality and integrity affect the corrosion performance of AZ31 magnesium composites. These novel materials are preferred for temporary orthopedic and vascular implants. In this paper, the drilling performance of AZ31-magnesium reinforced with hollow alumina microsphere syntactic foam under LN2 cryogenic, dry, and Almag Oil is presented.
View Article and Find Full Text PDFConventional machining techniques of ceramics such as milling, drilling, and turning experience high cutting forces as well as extensive tool wear. Nevertheless, non-contact processes such as laser machining and electro-discharge machining (EDM) remain suitable options for machining ceramics materials, which are considered as extremely brittle and hard-to-machine. Considering the importance of ceramic machining, this paper attempts to provide an insight into the state of the art of the EDM process, types of ceramics materials and their applications, as well as the machining techniques involved.
View Article and Find Full Text PDF