Conventional fertilizers face environmental and economic challenges due to their high solubility, leading to significant losses via runoff and leachate. This study presents a biodegradable hydrogel, synthesized from lignin and polyvinyl alcohol (PVA), designed as an eco-friendly carrier for struvite (fertilizer) with controlled phosphate release. The hydrogel was analysed through scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), Thermogravimetric analysis (TGA) and Differential scanning calorimetry (DSC).
View Article and Find Full Text PDFConverting waste heat from solar radiation and industrial processes into useable electricity remains a challenge due to limitations of traditional thermoelectrics. Ionic thermoelectric (i-TE) materials offer a compelling alternative to traditional thermoelectrics due to their excellent ionic thermopower, low thermal conductivity, and abundant material options. This review categorizes i-TE materials into thermally diffusive and thermogalvanic types, with an emphasis on the former due to its superior thermopower.
View Article and Find Full Text PDFLignin-derived porous carbons have great potential for energy storage applications. However, their traditional synthesis requires highly corrosive activating agents in order to produce porous structures. In this work, an environmentally friendly and unique method has been developed for preparing lignin-based 3D spherical porous carbons (LSPCs).
View Article and Find Full Text PDFSustainable materials are attracting a lot of attention since they will be critical in the creation of the next generation of products and devices. In this study, hydrogels were effectively synthesized utilizing lignin, a non-valorised biopolymer from the paper industry. This study proposes a method based on utilizing lignin to create highly swollen hydrogels using poly(ethylene) glycol diglycidyl ether (PEGDGE) as a crosslinking agent.
View Article and Find Full Text PDFInt J Biol Macromol
October 2022
Cellulose, an abundant natural polymer, has promising potential to be used for energy storage systems because of its excellent mechanical, structural, and physical characteristics. This review discusses the structural features of cellulose and describes its potential application as an electrode, separator, and binder, in various types of high-performing batteries. Various surface and structural characteristics of cellulose (e.
View Article and Find Full Text PDF