The utilization of biowastes for producing biochar to remove potentially toxic elements from water represents an important pathway for aquatic ecosystem decontamination. Here we explored the significance of thiol-functionalization on sugarcane bagasse biochar (Th/SCB-BC) and rice husk biochar (Th/RH-BC) to enhance arsenite (As(III)) removal capacity from water and compared their efficiency with both pristine biochars (SCB-BC and RH-BC). The maximum As(III) sorption was found on Th/SCB-BC and Th/RH-BC (2.
View Article and Find Full Text PDFOver the past decades, many forests have been converted to monoculture plantations, which might affect the soil microbial communities that are responsible for governing the soil biogeochemical processes. Understanding how reforestation efforts alter soil prokaryotic microbial communities will therefore inform forest management. In this study, the prokaryotic communities were comparatively investigated in a secondary Chinese fir forest (original) and a reforested Chinese fir plantation (reforested from a secondary Chinese fir forest) in Southern China.
View Article and Find Full Text PDFExogenous carbon (C) inputs stimulate soil organic carbon (SOC) decomposition, strongly influencing atmospheric concentrations and climate dynamics. The direction and magnitude of C decomposition depend on the C and nitrogen (N) addition, types and pattern. Despite the importance of decomposition, it remains unclear whether organic C input affects the SOC decomposition under different N-types (Ammonium Nitrate; AN, Urea; U and Ammonium Sulfate; AS).
View Article and Find Full Text PDFGlyphosate (Gly) and its formulations are broad-spectrum herbicides globally used for pre- and post-emergent weed control. Glyphosate has been applied to terrestrial and aquatic ecosystems. Critics have claimed that Gly-treated plants have altered mineral nutrition and increased susceptibility to plant pathogens because of Gly ability to chelate divalent metal cations.
View Article and Find Full Text PDFWastewater contamination with heavy metal(loids)s has become a worldwide environmental and public health problem due to their toxic and non-degradable nature. Different methods and technologies have been applied for water/wastewater treatment to mitigate heavy metal(loid)-induced toxicity threat to humans. Among various treatment methods, adsorption is considered the most attractive method because of its high ability and efficiency to remove contaminants from wastewater.
View Article and Find Full Text PDFUnder paddy soil conditions, rice plants are vulnerable to arsenic (As) accumulation, thus causing potential threat to human health. Here we investigated the influence of foliar-applied phosphorus (P: 10 and 20 mg L), silicon (Si: 0.6 and 1.
View Article and Find Full Text PDFIn this study, we explored the potential of a newly prepared nano-zero valent zinc (nZVZn), biochar (BC)/nZVZn and BC/hydroxyapatite-alginate (BC/HA-alginate) composites for the removal of inorganic As species from water. Relatively, higher percentage removal of As(III) and As(V) was obtained by nZVZn at pH 3.4 (96% and 94%, respectively) compared to BC/nZVZn (90% and 88%) and BC/HA-alginate (88% and 80%) at pH 7.
View Article and Find Full Text PDFTrace elements (TEs) contamination of agricultural soils requires suitable criteria for regulating their toxicity limits in soil and food crops, which depends on their potential ecological risk spanning regional to global scales. However, no comprehensive study is available that links TE concentrations in paddy soil with ecological and human health risks in less developed regions like Pakistan. Here we evaluated the data set to establish standard guidelines for defining the hazard levels of various potentially toxic TEs (such as As, Cd, Co, Cu, Cr, Fe, Mn, Ni, Pb, Se, Zn) in agricultural paddy soils of Punjab, Pakistan.
View Article and Find Full Text PDFRice is an important food crop that is susceptible to arsenic (As) contamination under paddy soil conditions depending on As uptake characteristics of the rice genotypes. Here we unveiled the significance of eighteen (fine and coarse) rice genotypes against As accumulation/tolerance, morphological and physiological response, and antioxidant enzymes-enabled defense pathways. Arsenic significantly affected rice plant morphological and physiological attributes, with relatively more impacts on fine compared to coarse genotypes.
View Article and Find Full Text PDFClimate change is a global challenge that is accelerated by contamination with hazardous substances like arsenic (As), posing threat to the agriculture, ecosystem and human health. Here, we explored the impact of various ameliorants on geochemical distribution of As in two soils with contrasting textures (sandy clay loam (Khudpur Village) and clay loam (Mattital Village)) under paddy soil conditions and their influence on the CO-carbon efflux. The exchangeable As pool in clay loam soil increased as: lignite (0.
View Article and Find Full Text PDFWater scarcity is a major threat to agriculture and humans due to over abstraction of groundwater, rapid urbanization and improper use in industrial processes. Industrial consumption of water is lower than the abstraction rate, which ultimately produces large amounts of wastewater such as from tannery industry containing high concentration of chromium (Cr). Chromium-contaminated tannery industry wastewater is used for irrigation of food crops, resulting in food safety and public health issues globally.
View Article and Find Full Text PDFIn this study, we investigated the distinct effects of organic (farmyard manure (FYM), cow dung (CD), biogas slurry (BGS), sugarcane bagasse (SCB)) and inorganic (gypsum and lignite) amendments on arsenic (As) accumulation by two rice genotypes, Kainat (fine) and Basmati-385 (coarse), under As stress. Results showed that shoot As concentration was ~2-time greater in Kainat compared to Basmati-385 (3.1-28 vs.
View Article and Find Full Text PDFArsenic (As) contamination in soil-plant system is an important environmental, agricultural and health issue globally. The microbe- and sulfate-mediated As cycling in soil-plant system may depend on soil sulfate levels, and it can be used as a potential strategy to reduce plant As uptake and improve plant growth. Here, we investigated the role of soil microbes (SMs) to examine As phytoaccumulation using maize as a test plant, under varying sulfate levels (S-0, S-5, S-25 mmol kg) and As stress.
View Article and Find Full Text PDFArsenic (As) contamination is a well-recognized environmental and health issue, threatening over 200 million people worldwide with the prime cases in South and Southeast Asian and Latin American countries. Rice is mostly cultivated under flooded paddy soil conditions, where As speciation and accumulation by rice plants is controlled by various geo-environmental (biotic and abiotic) factors. In contrast to other food crops, As uptake in rice has been found to be substantially higher due to the prevalence of highly mobile and toxic As species, arsenite (As(III)), under paddy soil conditions.
View Article and Find Full Text PDF