A central question for regenerative neuroscience is whether synthetic neural circuits, such as those built from two species, can function in an intact brain. Here, we apply blastocyst complementation to selectively build and test interspecies neural circuits. Despite approximately 10-20 million years of evolution, and prominent species differences in brain size, rat pluripotent stem cells injected into mouse blastocysts develop and persist throughout the mouse brain.
View Article and Find Full Text PDFAsymmetric segregation of cellular components regulates the fate and behavior of somatic stem cells. Similar to dividing budding yeast and precursor cells in Caenorhabditis elegans, it has been shown that mouse neural progenitors establish a diffusion barrier in the membrane of the endoplasmic reticulum (ER), which has been associated with asymmetric partitioning of damaged proteins and cellular age. However, the existence of an ER diffusion barrier in human cells remains unknown.
View Article and Find Full Text PDFThis protocol describes the isolation and culturing of primary neural stem cells (NSCs) from the adult mouse hippocampus, followed by the experimental approach for fluorescence loss in photobleaching assays, previously used to characterize the presence of an endoplasmic reticulum (ER) membrane diffusion barrier. The assay described here can be used to study live asymmetry in the ER membrane or other organelles that is established in dividing NSCs. For complete details on the use and execution of this protocol, please refer to Clay et al.
View Article and Find Full Text PDFNeural stem cells (NSCs) generate neurons throughout life in the hippocampal dentate gyrus. With advancing age, levels of neurogenesis sharply drop, which has been associated with a decline in hippocampal memory function. However, cell-intrinsic mechanisms mediating age-related changes in NSC activity remain largely unknown.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2019
Neural stem cells (NSCs) generate neurons and glial cells throughout embryonic and postnatal brain development. The role of S-palmitoylation (also referred to as S-acylation), a reversible posttranslational lipid modification of proteins, in regulating the fate and activity of NSCs remains largely unknown. We used an unbiased screening approach to identify proteins that are S-acylated in mouse NSCs and showed that bone morphogenic protein receptor 1a (BMPR1a), a core mediator of BMP signaling, is palmitoylated.
View Article and Find Full Text PDF