This article presents a dataset of hyperspectral images of handwriting samples collected from 54 individuals. The purpose of the presented dataset is to further explore the use of hyperspectral imaging in document image analysis and to benchmark the performance of forensic analysis methods for hyperspectral document images. Each hyperspectral cube in the dataset has a spatial resolution of 512 × 650 pixels and contains 149 spectral channels in the spectral range of 478-901 nm.
View Article and Find Full Text PDFDeep learning has attracted great attention in the medical imaging community as a promising solution for automated, fast and accurate medical image analysis, which is mandatory for quality healthcare. Convolutional neural networks and its variants have become the most preferred and widely used deep learning models in medical image analysis. In this paper, concise overviews of the modern deep learning models applied in medical image analysis are provided and the key tasks performed by deep learning models, i.
View Article and Find Full Text PDF