Narrow-bandgap (NBG) perovskite solar cells based on tin-lead mixed perovskite absorbers suffer from significant open-circuit voltage ( ) losses due primarily to a high defect density and charge carrier recombination at the device interfaces. In this study, the losses in NBG perovskite single junction cells ( = 1.21 eV) are addressed.
View Article and Find Full Text PDFOrganic solar cells based on nonfullerene acceptors have recently witnessed a significant rise in their power conversion efficiency values. However, they still suffer from severe instability issues, especially in an inverted device architecture based on the zinc oxide bottom electron transport layers. In this work, we insert a pyrene-bodipy donor-acceptor dye as a thin interlayer at the photoactive layer/zinc oxide interface to suppress the degradation reaction of the nonfullerene acceptor caused by the photocatalytic activity of zinc oxide.
View Article and Find Full Text PDFPhotovoltaic devices based on organic semiconductors and organo-metal halide perovskites have not yet reached the theoretically predicted power conversion efficiencies while they still exhibit poor environmental stability. Interfacial engineering using suitable materials has been recognized as an attractive approach to tackle the above issues. We introduce here a zinc porphyrin-triazine-bodipy donor-π bridge-acceptor dye as a universal electron transfer mediator in both organic and perovskite solar cells.
View Article and Find Full Text PDFSolar cells based on organic-inorganic halide perovskites are now leading the photovoltaic technologies because of their high power conversion efficiency. Recently, there have been debates on the microstructure-related defects in metal halide perovskites (grain size, grain boundaries, etc.) and a widespread view is that large grains are a prerequisite to suppress nonradiative recombination and improve photovoltaic performance, although opinions against it also exist.
View Article and Find Full Text PDF