Publications by authors named "Muhammad Idrees Afridi"

In this study, we investigate what happens to entropy in the presence of electrokinetic phenomena. It is speculated that the microchannel has an asymmetrical and slanted configuration. The presence of fluid friction, mixed convection, Joule heating, presence and absence of homogeneity, and a magnetic field are modelled mathematically.

View Article and Find Full Text PDF

In this article, the entropy generation characteristics of a laminar unsteady MHD boundary layer flow are analysed numerically for an incompressible, electrically conducting and dissipative fluid. The Ohmic heating and energy dissipation effects are added to the energy equation. The modelled dimensional transport equations are altered into dimensionless self-similar partial differential equations (PDEs) through suitable transformations.

View Article and Find Full Text PDF

The primary objective of the present work is to study the effects of heat transfer and entropy production in a nanofluid flow over a curved surface. The influences of Lorentz force and magnetic heating caused by the applied uniform magnetic field and energy dissipation by virtue of frictional heating are considered in the problem formulation. The effects of variable thermal conductivity are also encountered in the present model.

View Article and Find Full Text PDF

The effects of variable thermal conductivity on heat transfer and entropy generation in a flow over a curved surface are investigated in the present study. In addition, the effects of energy dissipation and Ohmic heating are also incorporated in the modelling of the energy equation. Appropriate transformations are used to develop the self-similar equations from the governing equations of momentum and energy.

View Article and Find Full Text PDF

The present research work explores the effects of suction/injection and viscous dissipation on entropy generation in the boundary layer flow of a hybrid nanofluid (Cu-AlO-HO) over a nonlinear radially stretching porous disk. The energy dissipation function is added in the energy equation in order to incorporate the effects of viscous dissipation. The Tiwari and Das model is used in this work.

View Article and Find Full Text PDF

In this article, we investigated entropy generation and heat transfer analysis in a viscous flow induced by a horizontally moving Riga plate in the presence of strong suction. The viscosity and thermal conductivity of the fluid are taken to be temperature dependent. The frictional heating function and non-linear radiation terms are also incorporated in the entropy generation and energy equation.

View Article and Find Full Text PDF