Publications by authors named "Muhammad Hidayatullah Khan"

Toxin-antitoxin (TA) systems are ubiquitous regulatory modules for bacterial growth and cell survival following stress. YefM-YoeB, the most prevalent type II TA system, is present in a variety of bacterial species. In Staphylococcus aureus, the YefM-YoeB system exists as two independent paralogous copies.

View Article and Find Full Text PDF

Anthranilate phosphoribosyltransferase (AnPRT) catalyzes the transfer of the phosphoribosyl group of 5'-phosphoribosyl-1'-pyrophosphate (PRPP) to anthranilate to form phosphoribosyl-anthranilate. Crystal structures of AnPRTs from bacteria and archaea have previously been determined; however, the structure of Saccharomyces cerevisiae AnPRT (ScAnPRT) still remains unsolved. Here, crystal structures of ScAnPRT in the apo form as well as in complex with its substrate PRPP and the substrate analogue 4-fluoroanthranilate (4FA) are presented.

View Article and Find Full Text PDF

YoeB-YefM, the widespread type II toxin-antitoxin (TA) module, binds to its own promoter to autoregulate its transcription: repress or induce transcription under normal or stress conditions, respectively. It remains unclear how YoeB-YefM regulates its transcription depending on the YoeB to YefM TA ratio. We find that YoeB-YefM complex from S.

View Article and Find Full Text PDF

Molecular chaperones can prevent and repair protein misfolding and aggregation to maintain protein homeostasis in cells. Hsp40 chaperones interact with unfolded client proteins via the dynamic multivalent interaction (DMI) mechanism with their multiple client-binding sites. Here we report that a type I Hsp40 chaperone from Streptococcus pneumonia (spHsp40) forms a concentration-independent polydispersity oligomer state in solution.

View Article and Find Full Text PDF

Phosphopantothenoylcysteine (PPC) synthetase (PPCS) catalyzes nucleoside triphosphate-dependent condensation reaction between 4'-phosphopantothenate (PPA) and l-cysteine to form PPC in CoA biosynthesis. The catalytic mechanism of PPCS has not been resolved yet. Coenzyme A biosynthesis protein 2 (Cab2) possesses activity of PPCS in Saccharomyces cerevisiae.

View Article and Find Full Text PDF

By bearing a papain-like core structure and a cysteine-based catalytic triad, deamidase can convert glutamine to glutamic acid or asparagine to aspartic acid to modify the functions of host target proteins resulting in the blocking of eukaryotic host cell function. Legionella pneumophila effector Lpg2148 (MvcA) is a deamidase, a structural homolog of cycle inhibiting factor (Cif) effectors. Lpg2148 and Cif effectors are functionally diverse, with Lpg2148 only catalyzing ubiquitin but not NEDD8.

View Article and Find Full Text PDF

Thiolases are vital enzymes which participate in both degradative and biosynthetic pathways. Biosynthetic thiolases catalyze carbon-carbon bond formation by a Claisen condensation reaction. The cytoplasmic acetoacetyl-CoA thiolase from Saccharomyces cerevisiae, ERG10, catalyses carbon-carbon bond formation in the mevalonate pathway.

View Article and Find Full Text PDF

This part of work was done to explore the basic understanding of the adsorption chromatography by determining the interaction of selected model proteins ( = 5) to monolithic chromatographic materials, with varying densities of butyl and phenyl ligands. Surface energetics approach was applied to study the interaction behavior. The physicochemical properties of the proteins and monolithic chromatographic materials were explored by contact angle and zeta potential values.

View Article and Find Full Text PDF