In this study, we explored the morphological and electrochemical properties of carbon-based electrodes derived from laser-induced graphene (LIG) and compared them to commercially available graphene-sheet screen-printed electrodes (GS-SPEs). By optimizing the laser parameters (average laser power, speed, and focus) using a design of experiments response surface (DoE-RS) approach, binder-free LIG electrodes were achieved in a single-step process. Traditional trial-and-error methods can be time-consuming and may not capture the interactions between all variables effectively.
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2024
This article introduces a methodology to increase the integration density of functional electronic features on fibers/threads/wires through additive deposition of functional materials via printed electronics. It opens the possibility to create a multifunctional intelligent system on a single fiber/thread/wire while combining the advantages of existing approaches, i.e.
View Article and Find Full Text PDF