Publications by authors named "Muhammad Hammad Saleem"

Deep learning (DL) is an effective approach to identifying plant diseases. Among several DL-based techniques, transfer learning (TL) produces significant results in terms of improved accuracy. However, the usefulness of TL has not yet been explored using weights optimized from agricultural datasets.

View Article and Find Full Text PDF

The accurate identification of weeds is an essential step for a site-specific weed management system. In recent years, deep learning (DL) has got rapid advancements to perform complex agricultural tasks. The previous studies emphasized the evaluation of advanced training techniques or modifying the well-known DL models to improve the overall accuracy.

View Article and Find Full Text PDF

The identification of plant disease is an imperative part of crop monitoring systems. Computer vision and deep learning (DL) techniques have been proven to be state-of-the-art to address various agricultural problems. This research performed the complex tasks of localization and classification of the disease in plant leaves.

View Article and Find Full Text PDF

Recently, plant disease classification has been done by various state-of-the-art deep learning (DL) architectures on the publicly available/author generated datasets. This research proposed the deep learning-based comparative evaluation for the classification of plant disease in two steps. Firstly, the best convolutional neural network (CNN) was obtained by conducting a comparative analysis among well-known CNN architectures along with modified and cascaded/hybrid versions of some of the DL models proposed in the recent researches.

View Article and Find Full Text PDF

Plant diseases affect the growth of their respective species, therefore their early identification is very important. Many Machine Learning (ML) models have been employed for the detection and classification of plant diseases but, after the advancements in a subset of ML, that is, Deep Learning (DL), this area of research appears to have great potential in terms of increased accuracy. Many developed/modified DL architectures are implemented along with several visualization techniques to detect and classify the symptoms of plant diseases.

View Article and Find Full Text PDF

Purpose: To determine the optimal time interval between tumescent local anesthesia infiltration and the start of hand surgery without a tourniquet for improved operative field visibility.

Methods: Patients aged 16 to 60 years who needed contracture release and tendon repair in the hand were enrolled from the outpatient clinic. Patients were randomized to 10-, 15-, or 25-minute intervals between tumescent anesthetic solution infiltration (0.

View Article and Find Full Text PDF