Climatic change and extreme weather events have become a major threat to global agricultural productivity. Plants coexist with microorganisms, which play a significant role in influencing their growth and functional traits. The rhizosphere serves as an ecological niche encompassing plant roots and is a chemically complex environment that supports the growth and development of diverse plant-interactive microbes.
View Article and Find Full Text PDFRecently, Artificial intelligence (AI) has emerged as a revolutionary field, providing a great opportunity in shaping modern crop breeding, and is extensively used indoors for plant science. Advances in crop phenomics, enviromics, together with the other "omics" approaches are paving ways for elucidating the detailed complex biological mechanisms that motivate crop functions in response to environmental trepidations. These "omics" approaches have provided plant researchers with precise tools to evaluate the important agronomic traits for larger-sized germplasm at a reduced time interval in the early growth stages.
View Article and Find Full Text PDFYield is one of the most important agronomic traits for the breeding of rapeseed ( L), but its genetic dissection for the formation of high yield remains enigmatic, given the rapid population growth. In the present review, we review the discovery of major loci underlying important agronomic traits and the recent advancement in the selection of complex traits. Further, we discuss the benchmark summary of high-throughput techniques for the high-resolution genetic breeding of rapeseed.
View Article and Find Full Text PDFWheat is a major food crop worldwide. The plant architecture is a complex trait mostly influenced by plant height, tiller number, and leaf morphology. Plant height plays a crucial role in lodging and thus affects yield and grain quality.
View Article and Find Full Text PDFSci Rep
September 2020
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFGenome editing is a relevant, versatile, and preferred tool for crop improvement, as well as for functional genomics. In this review, we summarize the advances in gene-editing techniques, such as zinc-finger nucleases (ZFNs), transcription activator-like (TAL) effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats (CRISPR) associated with the Cas9 and Cpf1 proteins. These tools support great opportunities for the future development of plant science and rapid remodeling of crops.
View Article and Find Full Text PDFSaudi J Biol Sci
November 2019
Infectious (or Communicable) diseases are not only the past but also the present problem in developing as well as developed countries. It is caused by various pathogenic microbes like fungi, bacteria, parasites and virus etc. The medicinal plants and nano-silver have been used against the pathogenic microbes.
View Article and Find Full Text PDFJute (Corchorus capsularis L.) is the most commonly used natural fiber as reinforcement in green composites and, due to its huge biomass, deep rooting system, and metal tolerance in stressed environments, it is an excellent candidate for the phytoremediation of different heavy metals. Therefore, the present study was carried out to examine the growth, antioxidant capacity, gaseous exchange attributes, and phytoremediation potential of C.
View Article and Find Full Text PDFYellow seed is a desirable trait with great potential for improving seed quality in Brassica crops. Unfortunately, no natural or induced yellow seed germplasms have been found in Brassica napus, an important oil crop, which likely reflects its genome complexity and the difficulty of the simultaneous random mutagenesis of multiple gene copies with functional redundancy. Here, we demonstrate the first application of CRISPR/Cas9 for creating yellow-seeded mutants in rapeseed.
View Article and Find Full Text PDFRhizoctonia solan Kühn (teleomorph: Thanatephorus cucumeris (Frank) Donk (R. solani) is a soil-borne phytopathogenic species complex as well as a necrotic fungus that causes significant crop yield losses worldwide. Agronomic practices (crop rotation), resistant cultivars, and chemical pesticides are widely used to control R.
View Article and Find Full Text PDFBnA10.LMI1 positively regulates the development of leaf lobes in Brassica napus, and cis-regulatory divergences cause the different allele effects. Leaf shape is an important agronomic trait, and large variations in this trait exist within the Brassica germplasm.
View Article and Find Full Text PDFAtropa acuminata Royle Ex Lindl (Atropa acuminata) under tremendous threat of extinction in its natural habitat. However, the antimicrobial, antileishmanial and anticancer effects of the plant's extracts have not been reported yet. In the current study, an attempt has been made to evaluate the pharmacological potential of this plant's extracts against microbes, Leishmania and cancer.
View Article and Find Full Text PDFSilver nanotechnology has received tremendous attention in recent years, owing to its wide range of applications in various fields and its intrinsic therapeutic properties. In this review, an attempt is made to critically evaluate the chemical, physical, and biological synthesis of silver nanoparticles (AgNPs) as well as their efficacy in the field of theranostics including microbiology and parasitology. Moreover, an outlook is also provided regarding the performance of AgNPs against different biological systems such as bacteria, fungi, viruses, and parasites (leishmanial and malarial parasites) in curing certain fatal human diseases, with a special focus on cancer.
View Article and Find Full Text PDFClustered regularly interspaced palindromic repeats associated protein Cas9 (CRISPR-Cas9), originally an adaptive immunity system of prokaryotes, is revolutionizing genome editing technologies with minimal off-targets in the present era. The CRISPR/Cas9 is now highly emergent, advanced, and highly specific tool for genome engineering. The technology is widely used to animal and plant genomes to achieve desirable results.
View Article and Find Full Text PDFSalinity is a worldwide environmental problem of agricultural lands. Smoke and plant growth-promoting bacteria (PGPR) are individually used to improve plant growth, but the combined effects of these have not been studied yet under saline conditions. The combined effect of plant growth-promoting bacteria Bacillus safensis and plant-derived smoke Cymbopogon jwarancusa was studied under different salinity level as 50, 100, and 150 mM on rice (cv.
View Article and Find Full Text PDF