This review explores core-shell scaffolds in bone tissue engineering, highlighting their osteoconductive and osteoinductive properties critical for bone growth and regeneration. Key design factors include material selection, porosity, mechanical strength, biodegradation kinetics, and bioactivity. Electrospun core-shell nanofibrous scaffolds demonstrate potential in delivering therapeutic agents and enhancing bone regeneration.
View Article and Find Full Text PDFThe key attributes of core-shell fibers are their ability to preserve bioactivity of incorporated-sensitive biomolecules (such as drug, protein, and growth factor) and subsequently control biomolecule release to the targeted microenvironments to achieve therapeutic effects. Such qualities are highly favorable for tissue engineering and drug delivery, and these features are not able to be offered by monolithic fibers. In this review, we begin with an overview on design requirement of core-shell fibers, followed by the summary of recent preparation methods of core-shell fibers, with focus on electrospinning-based techniques and other newly discovered fabrication approaches.
View Article and Find Full Text PDF