Publications by authors named "Muhammad Chhattal"

Achieving fast and long-lasting superlubricity in two-dimensional (2D) materials under high-stress conditions is challenging due to their susceptibility to structural deformations, limited load-bearing capacity, oxidation, and thermal degradation. This study introduces an innovative strategy by utilizing a composite of MXene and H-DLC, where, under high-stress conditions, H-DLC acts as a preferential energy-absorbing phase. MXene serves as a template to rapidly and continuously transform the absorbed energy into graphene-like structures, forming an in situ heterogeneous MXene/graphene-like interface.

View Article and Find Full Text PDF

MXene is considered as a promising solid lubricant due to facile shearing ability and tuneable surface chemistry. However, it faces challenges in high-humidity environments where excessive water molecules can significantly impact its 2D structure, thus deteriorating its lubricating properties. In this work, the self-assembled monolayers are formed on MXene by surface chlorination (MXene-Cl) and fluorination (MXene-F), and their friction behaviors in high/low humidity are investigated.

View Article and Find Full Text PDF

Reducing energy consumption and CO emissions by improving the tribological performance of mechanical systems relies on the development of new lubrication concepts. Two-dimensional (2D) materials have been the subject of extensive tribological research due to their unique physical and chemical properties. 2D transition metal carbides, nitrides, and carbonitrides (MXenes), with their tuneable chemistry and structure, are a relatively new addition to the family of 2D materials.

View Article and Find Full Text PDF