Polyester-based advanced thin films have versatile industrial applications, especially in the fields of textiles, packaging, and electronics. Recent advances in polymer science and engineering have resulted in the development of advanced amorphous and semi-crystalline polyesters with exceptional performance compared to those of conventional polymeric films. Among these, 1,4-cyclohexanedimethanol (CHDM) and cyclic-monomer-based polyesters have gained considerable attention for their exceptional characteristics and potential applications in smart films.
View Article and Find Full Text PDFHerein, spinal fixation implants were constructed using degradable polymeric materials such as PGA-PLA block copolymers (poly(glycolic acid-b-lactic acid)). These materials were reinforced by blending with HA-g-PLA (hydroxyapatite-graft-poly lactic acid) and PGA fiber before being tested to confirm its biocompatibility via in vitro (MTT assay) and in vivo animal experiments (i.e.
View Article and Find Full Text PDFPoly(lactide) (PLA) has received tremendous attention recently from researchers and industrialists due to its ability to solve environmental problems related to plastic pollution. However, PLA's brittleness, poor thermal stability, low elongation at break, and poor melt processing prevent its use in a broader spectrum of applications. Herein, we produced a very tough and thermally more stable PLA stereocomplex by simply mixing PLA with organoalkoxysilane.
View Article and Find Full Text PDFThe synthesis of high molecular weight poly (lactic--glycolic) acid (PLGA) copolymers via direct condensation copolymerization is itself a challenging task. Moreover, some of the characteristic properties of polylactide (PLA)-based biomaterials, such as brittleness, hydrophobicity, and longer degradation time, are not suitable for certain biomedical applications. However, such properties can be altered by the copolymerization of PLA with other biodegradable monomers, such as glycolic acid.
View Article and Find Full Text PDF