Publications by authors named "Muhammad Atif Saleem"

Nonsteroidal anti-inflammatory drugs are commonly administered orally to manage pain and inflammation, but they can have negative gastrointestinal side effects. Topical delivery is an alternative, and microemulsions (μEs) have been shown to be effective in facilitating, but they suffer from a liquid nature and low long-term retention on the skin. Hence, microemulsified gels (μEGs) have been developed, and in this study, we explored certain μEGs with diclofenac sodium (DF-Na) and naproxen sodium (NP-Na) with the hypothesis to ensure a slower and more sustained delivery of NSAIDs through the skin.

View Article and Find Full Text PDF

Microemulsified gels (μEGs) with fascinating functions have become indispensable as topical drug delivery systems due to their structural flexibility, high stability, and facile manufacturing process. Topical administration is an attractive alternative to traditional methods because of advantages such as noninvasive administration, bypassing first-pass metabolism, and improving patient compliance. In this article, we report on the new formulations of microemulsion-based gels suitable for topical pharmaceutical applications using biocompatible and ecological ingredients.

View Article and Find Full Text PDF

Nanostructures play an important role in targeting sparingly water-soluble drugs to specific sites. Because of the structural flexibility and stability, the use of template microemulsions (μEs) can produce functional nanopharmaceuticals of different sizes, shapes, and chemical properties. In this article, we report a new volatile oil-in-water (o/w) μE formulation comprising ethyl acetate/ethanol/brij-35/water to obtain the highly water-dispersible nanoparticles of an antihyperlipidemic agent, ezetimibe (EZM-NPs), to enhance its dissolution profile.

View Article and Find Full Text PDF

To overcome the increased disease rate, utilization of the versatile broad spectrum antibiotic drugs in controlled drug-delivery systems has been a challenging and complex consignment. However, with the development of microemulsion (μE)-based formulations, drugs can be effectively encapsulated and transferred to the target source. Herein, two biocompatible oil-in-water (o/w) μE formulations comprising clove oil/Tween 20/ethylene glycol/water (formulation A) and clove oil/Tween 20/1-butanol/water (formulation B) were developed for encapsulating the gatifloxacin (GTF), a fourth-generation antibiotic.

View Article and Find Full Text PDF

Microemulsions (μEs) are unique systems that offer exciting perspectives in biophysical research for mimicing biomembranes at the molecular level. In the present study, biocompatible μE formulation of a new oil-in-water (o/w) system comprising clove oil/Tween 20/2-propanol/water was accomplished for encapsulating an antibiotic, levofloxacin (LVF). The pseudoternary phase diagram was delineated at a constant cosurfactant/surfactant (2:1) ratio to meet the economic feasibility.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionit5d258r74o1of26vp23caik4tkk7uer): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once