Publications by authors named "Muhammad Asad Ullah Khalid"

Solid-state nanopores, known for their label-free detection and operational simplicity, face challenges in accurately sizing the short nucleic acids due to fast translocation and a lack of enzyme-based control mechanisms as compared to their biological counterparts with sizing resolutions still limited to ≥100 bp. Here, we present a facile polyethylene glycol-dimethacrylate (PEG-DMA) hydrogel interfaced glass nanopore (HIGN) system by inserting glass nanopore into the hydrogel to achieve sub-100 base pair (bp) resolution in short DNA sizing analysis. We systematically investigated the effects of hydrogel mesh size, spatial configurations of glass nanopores about the hydrogel, applied bias voltage, and analyte concentration on the transport dynamics of 200 bp double-stranded DNA (dsDNA).

View Article and Find Full Text PDF

The global health threat posed by the Monkeypox virus (Mpox) requires swift, simple, and accurate detection methods for effective management, emphasizing the growing necessity for decentralized point-of-care (POC) diagnostic solutions. The clustered regularly interspaced short palindromic repeats (CRISPR), initially known for its effective nucleic acid detection abilities, presents itself as an attractive diagnostic strategy. CRISPR offers exceptional sensitivity, single-base specificity, and programmability.

View Article and Find Full Text PDF
Article Synopsis
  • Monkeypox virus (MPXV) is a global health threat that requires quick and accurate detection methods to control its spread, and the CRISPR technique has shown great potential for this purpose.
  • A new method, called RPA-SCAN, combines isothermal recombinase polymerase amplification with CRISPR-Cas12a, achieving a very low limit of detection (LoD) for MPXV, enabling point-of-care diagnostics.
  • The RPA-SCAN test has demonstrated 100% accuracy in distinguishing MPXV from similar viruses and is versatile for diagnosing other infectious diseases due to its electronic format and potential for miniaturization.
View Article and Find Full Text PDF

Sensing devices have shown tremendous potential for monitoring state-of-the-art organ chip devices. However, challenges like miniaturization while maintaining higher performance, longer operating times for continuous monitoring, and fabrication complexities limit their use. Herein simple, low-cost, and solution-processible inkjet dispenser printing of embedded electrochemical sensors for dissolved oxygen (DO) and reactive oxygen species (ROS) is proposed for monitoring developmental (initially normoxia) and induced hypoxia in a custom-developed gut bilayer microfluidic chip platform for 6 days.

View Article and Find Full Text PDF

Hepatic fibrosis is a foreshadowing of future adverse events like liver cirrhosis, liver failure, and cancer. Hepatic stellate cell activation is the main event of liver fibrosis, which results in excessive extracellular matrix deposition and hepatic parenchyma's disintegration. Several biochemical and molecular assays have been introduced for in vitro study of the hepatic fibrosis progression.

View Article and Find Full Text PDF

Vaspin is a protein present in human serum that can cause type-2 diabetes, obesity, and other cardiovascular diseases. We report fluorescent upconverting nanoparticles (UCNPs)-based lateral flow biosensor for ultrasensitive detection of Vaspin. A pair (primary and secondary) of cognate aptamers was used that has duo binding with Vaspin.

View Article and Find Full Text PDF