Unlabelled: Obesity is an important risk factor for diabetes mellitus (DM) which is a major global health problem. Electro-mechanical dysfunction has been extensively described in diabetic heart and cardiovascular complications are an important cause of mortality and morbidity in diabetic patients.
Objectives: To examine the effects of Isoprenaline (ISO) in obesity and diabesity on ventricular myocyte shortening and Ca transport in Zucker fatty (ZF), Zucker diabetic fatty (ZDF) in comparison to Zucker lean (ZL) rats.
New Findings: What is the central question of this study? To investigate haemodynamic dysfunction in the type 2 diabetic Goto-Kakizaki (GK) rat, we measured shortening and Ca transport in ventricular myocytes from epicardial (EPI) and endocardial (ENDO) regions. What is the main finding and its importance? EPI and ENDO GK myocytes displayed similar hypertrophy. Time to peak (TPK) and time to half (THALF) relaxation were prolonged in EPI GK myocytes.
View Article and Find Full Text PDFDiabetes mellitus is a major global health disorder and, currently, over 450 million people have diabetes with 90% suffering from type 2 diabetes. Left untreated, diabetes may lead to cardiovascular diseases which are a leading cause of death in diabetic patients. Calcium is the trigger and regulator of cardiac muscle contraction and derangement in cellular Ca homeostasis, which can result in heart failure and sudden cardiac death.
View Article and Find Full Text PDFBackground: Experiments in isolated perfused heart have shown that heart rate is lower and sinoatrial node (SAN) action potential duration is longer in streptozotocin (STZ)-induced diabetic rat compared to controls. In sino-atrial preparations the pacemaker cycle length and sino-atrial conduction time are prolonged in STZ heart. To further clarify the molecular basis of electrical disturbances in the diabetic heart the profile of mRNA encoding a wide variety of proteins associated with the generation and transmission of electrical activity has been evaluated in the SAN of STZ-induced diabetic rat heart.
View Article and Find Full Text PDFDiabetes mellitus is a serious global health problem, and cardiovascular complications are the major cause of morbidity and mortality in diabetic patients. The chronic effects of neonatal alloxan- (ALX) induced diabetes mellitus on ventricular myocyte contraction and intracellular Ca(2+) transport have been investigated. Ventricular myocyte shortening was measured with a video edge detection system and intracellular Ca(2+) was measured in fura-2 loaded cells by fluorescence photometry.
View Article and Find Full Text PDF