Publications by authors named "Muhammad Anwaar Nazeer"

Gas separation membranes are critical in a variety of environmental research and industrial applications. These membranes are designed to selectively allow some gases to flow while blocking others, allowing for the separation and purification of gases for a variety of applications. Therefore, the demand for fast and energy-efficient gas separation techniques is of central interest for many chemical and energy production diligences due to the intensified levels of greenhouse and industrial gases.

View Article and Find Full Text PDF

Bio-based drug delivery devices have gained enormous interest in the biomedical field due to their biocompatible attributes. Extensive research is being conducted on chitosan-based devices for drug delivery applications. Chitosan being hydrophobic under neutral conditions makes it difficult to interact with a polar drug of curcumin.

View Article and Find Full Text PDF

Membrane technology has extensively been used in diverse phenomena such as separation, purification and controlled transportation. Herein, gelatin-incorporated porous chitosan membranes have been prepared using the sol-gel approach for potential water desalination applications. The porogens of poly(ethylene glycol) and Triton X-100 were employed for the mentioned purpose.

View Article and Find Full Text PDF

Gelatin's versatile functionalization offers prospects of facile and effective crosslinking as well as combining with other materials (e.g., metal nanoparticles, carbonaceous, minerals, and polymeric materials exhibiting desired functional properties) to form hybrid materials of improved thermo-mechanical, physio-chemical and biological characteristics.

View Article and Find Full Text PDF

Piezoelectric materials have attracted more attention than other materials in the field of textiles. Piezoelectric materials offer advantages as transducers, sensors, and energy-harvesting devices. Commonly, ceramics and quartz are used in such applications.

View Article and Find Full Text PDF

In this study, we report the synthesis of single and dual-crosslinked anthracene-functional chitosan-based hydrogels in the absence of toxic initiators. Single crosslinking was achieved through dimerization of anthracene, whereas dual-crosslinked hydrogel was formed through dimerization of anthracene and free radical photopolymerization of methacrylated-chitosan in the presence of non-toxic initiator riboflavin, a well-known vitamin B2. Both single and dual-crosslinked hydrogels were found to be elastic, as was determined through rheological analysis.

View Article and Find Full Text PDF

One of the key challenges in engineering three-dimensional tissue constructs is the development of a mature microvascular network capable of supplying sufficient oxygen and nutrients to the tissue. Recent angiogenic therapeutic strategies have focused on vascularization of the constructed tissue, and its integration ; these strategies typically combine regenerative cells, growth factors (GFs) with custom-designed biomaterials. However, the field needs to progress in the clinical translation of tissue engineering strategies.

View Article and Find Full Text PDF

3D bioprinting of hydrogels has gained great attention due to its potential to manufacture intricate and customized scaffolds that provide favored conditions for cell proliferation. Nevertheless, plain natural hydrogels can be easily disintegrated, and their mechanical strengths are usually insufficient for printing process. Hence, composite hydrogels are developed for 3D printing.

View Article and Find Full Text PDF

Glycan-based alginate hydrogels have great potential in creating new vehicles with responsive behavior and tunable properties for biomedicine. However, precise control and tunability in properties present major barrier for clinical translation of these materials. Here, we report the synthesis of pH responsive anthracene modified glycan-based hydrogels for selective release of therapeutic molecules.

View Article and Find Full Text PDF

Synthesis of hydroxyapatite (HA) through sol-gel process in different solvent systems is reported. Calcium nitrate tetrahydrate (CNTH) and diammonium hydrogen phosphate (DAHP) were used as calcium and phosphorus precursors, respectively. Three different synthesis reactions were carried out by changing the solvent media, while keeping all other process parameters constant.

View Article and Find Full Text PDF

Preparation and characterization of chitosan/hydroxyapatite (CS/HA) nanocomposites displaying an intercalated structure is reported. Hydroxyapatite was synthesized through sol-gel process. Formic acid was introduced as a new solvent to obtain stable dispersions of nano-sized HA particles in polymer solution.

View Article and Find Full Text PDF