Future generations of solid-state lighting (SSL) will prioritize the development of innovative luminescent materials with superior characteristics. The phosphors converted into white light-emitting diodes (white LEDs) often have a blue-green cavity. Cyan-emitting phosphor fills the spectral gap and produces "full-visible-spectrum lighting.
View Article and Find Full Text PDFPerovskite nanocrystals (PeNCs) have emerged as a promising class of luminescent materials offering size and composition-tunable luminescence with high efficiency and color purity in the visible range. PeNCs doped with Yb ions, known for their near-infrared (NIR) emission properties, have gained significant attention due to their potential applications. However, these materials still face challenges with weak NIR electroluminescence (EL) emission and low external quantum efficiency (EQE), primarily due to undesired resonance energy transfer (RET) occurring between the host and Yb ions, which adversely affects their emission efficiency and device performance.
View Article and Find Full Text PDFPerovskite nanocrystals (NCs) feature adjustable bandgap, wide absorption range, and great color purity for robust perovskite optoelectronic applications. Nevertheless, the absence of lasting stability under continues energization, is still a major hurdle to the widespread use of NCs in commercial applications. In particular, the reactivity of red-emitting perovskites to environmental surroundings is more sensitive than that of their green counterparts.
View Article and Find Full Text PDFAmong the lead halide perovskites, the photoluminescence quantum yields (PLQYs) of perovskite quantum dots (PQDs) in the violet region are the very lowest. This is an obstacle to the optical applications across the entire visible area based on perovskite materials. Herein, we report a novel strontium (Sr)-substitution along with chlorine passivation strategy to enhance the PLQYs of CsPbCl PQDs.
View Article and Find Full Text PDFIn recent years, significant progress has been made in the red and green perovskite quantum dots (PQDs) based light-emitting devices. However, a scarcity of blue-emitting devices that are extremely efficient precludes their research and development for optoelectronic applications. Taking advantage of tunable bandgaps of PQDs over the entire visible spectrum, herein we tune optical properties of CSPbBrby mixing Ndtrivalent lanthanide halide cations for blue light-emitting devices.
View Article and Find Full Text PDFLead halide perovskite quantum dots (PQDs) are reported as a promising branch of perovskites, which have recently emerged as a field in luminescent materials research. However, before the practical applications of PQDs can be realized, the problem of poor stability has not yet been solved. Herein, we propose a trioctylphosphine (TOP)-assisted pre-protection low-temperature solvothermal synthesis of highly stable CsPbBr/TiO nanocomposites.
View Article and Find Full Text PDFVery recently, ultrathin perovskite nanostructures, with the advantages of perovskite and ultrathin properties, have received an enormous level of interest due to their many fascinating properties, such as a strong quantum confinement effect and a large specific surface area. In spite of this incredible success of perovskite nanocrystals (NCs), the development of perovskite NCs is still in its infancy, and the production of high-quality ultrathin perovskite nanostructures has been a hot topic in the fields of nanoscience and nanotechnology. Herein, we demonstrate that ultrathin CsPbBr3 perovskite nanosheets (NSs) can be obtained by a simple mixing of precursor-ligand complexes under ambient conditions.
View Article and Find Full Text PDFVery recently, two-dimensional (2D) perovskite nanosheets (PNSs), taking the advantages of perovskite as well as the 2D structure properties, have received an enormous level of interest throughout the scientific community. In spite of this incredible success in perovskite nanocrystals (NCs), self-assembly of many nanostructures in metal halide perovskites has not yet been realized, and producing highly efficient red-emitting PNSs remains challenging. In this Letter, we show that by using CsPbBrI perovskite nanoparticles (NPs) as a building block, PNSs can emerge spontaneously under high ambient pressure via template-free self-assembly without additional complicated operation.
View Article and Find Full Text PDF