Publications by authors named "Muhammad Ali Inam"

The presence of heavy metal (HM) ions, such as lead, cadmium, and chromium in industrial wastewater discharge are major contaminants that pose a risk to human health. These HMs should separate from the wastewater to ensure the reuse of the discharged water in the process and mitigate their environmental impacts. The distinctive mechanical properties of 2D graphene oxide (GO), and the antifouling characteristics of metal oxides (ZnO/NiO) nanoparticles combined to produce composites supporting special features for wastewater treatment.

View Article and Find Full Text PDF

The presence of inorganic and organic substances may alter the physicochemical properties of iron (Fe) salt precipitates, thereby stabilizing the antimony (Sb) oxyanions in potable water during the chemical treatment process. Therefore, the present study aimed to examine the surface characteristics, size of Fe flocs and coagulation performance of Sb oxyanions under different aqueous matrices. The results showed that surface properties of Fe flocs significantly varies with pH in both Sb(III, V) suspensions, thereby increasing the mobility of Sb(V) ions in alkaline conditions.

View Article and Find Full Text PDF

Ballasted flocculation (BF) is an efficient way to remove the turbidity from surface water. The objective of the present study is to optimize the ballast (magnetite), coagulant (poly aluminum chloride) concentration and pH for efficient turbidity removal from surface water. To do this, the sludge produced from an optimized dose of a BF treatment was utilized for the production of lightweight (LW) aggregates by combining it with hard clay and sewage sludge.

View Article and Find Full Text PDF

Arsenic (As)-laden wastewater may pose a threat to biodiversity when released into soil and water bodies without treatment. The current study investigated the sorption properties of both As(III, V) oxyanions onto iron hydroxide (FHO) by chemical coagulation. The potential mechanisms were identified using the adsorption models, ζ-potential, X-ray diffraction (XRD) and Fourier Transform Infrared Spectrometry (FT-IR) analysis.

View Article and Find Full Text PDF

In this work, a bimetallic Ni/La nanoparticle-laded biosorbent was fabricated from pomegranate fibers by solvothermal synthesis method. The material exhibited a high-efficient phosphate removal capability. The results of the characterization analysis showed that the surface of pomegranate fibers was rough and evenly coated with Ni and La after modification, and the specific surface area of Ni-La@Peel increased to 50.

View Article and Find Full Text PDF

The widespread usage of nano-copper oxide particles (nano-CuO) in several industrial products and applications raises concerns about their release into water bodies. Thus, their elimination from drinking water is essential to reduce the risk to human health. This work investigated the removal of nano-CuO from pure water and montmorillonite clay (MC) suspensions using poly aluminum ferric chloride (PAFC) as well as cationic polyacrylamide (PAM) by the coagulation-flocculation-sedimentation (C/F/S) process.

View Article and Find Full Text PDF

The increased utilization of CuO nanoparticles (CuO NPs) in various fields has raised concerns about their discharge into water containing a wide range of organic ligands. Moreover, the adsorption of these ligands can stabilize the CuO NPs in drinking water treatment plants. Thus, their removal from potable water is important to mitigate the risk to humans.

View Article and Find Full Text PDF

The chronic ingestion of arsenic (As) contaminated water has raised significant health concerns worldwide. Iron-based coagulants have been widely used to remove As oxyanions from drinking water sources. In addition, the system's ability to lower As within the maximum acceptable contamination level (MCL) is critical for protecting human health from its detrimental effects.

View Article and Find Full Text PDF

This study aimed to fabricate new and effective material for the efficiency of phosphate adsorption. Two types of adsorbent materials, the zirconium hydroxides embedded in pomegranate peel (Zr/Peel) and zirconium-lanthanum hydroxides embedded in pomegranate peel (Zr-La/Peel) were developed. Scanning electronic microscopy (SEM), x-ray photoelectron spectroscopy (XPS) and x-ray diffraction (XRD) were evaluated to give insight into the physicochemical properties of these adsorbents.

View Article and Find Full Text PDF

The process of coagulation and precipitation affect the fate and mobility of antimony (Sb) species in drinking water. Moreover, the solubility and physico-chemical properties of the precipitates may be affected by the media chemistry. Accordingly, the present study aimed to investigate the removal of Sb(III, V) species by ferric chloride coagulation under various water chemistry influences with a particular focus on the role of the properties of the precipitates.

View Article and Find Full Text PDF

The co-occurrence of arsenic (As) and organic ligands in water bodies has raised environmental concerns due to their toxicity and adverse effects on human health. The present study aims to elucidate the influences of hydrophobic/hydrophilic organic ligands, such as humic acid (HA) and salicylic acid (SA), on the interactive behavior of As species in water. Moreover, the competitive removal behaviors of As(III, V) species and total organic carbon (TOC) were systematically investigated by coagulation-flocculation-sedimentation (C/F/S) under various aqueous matrices.

View Article and Find Full Text PDF

The widespread use of copper oxide nanoparticles (CuO NPs) and surfactants in various consumer products makes it likely that they coexist in aqueous environments, making it important to study the effects of surfactants on the fate and transport behavior of CuO NPs. The present study aims to investigate the influence of anionic sodium lauryl sulfate (SLS) and nonionic nonylphenol ethoxylate (NPEO, Tergitol NP-9), on CuO NPs adsorption, aggregation, and removal from water by the coagulation process. The result of the sorption study indicates that both surfactants could be adsorbed on the surface of CuO NPs, and that SLS remarkably decreases the ζ potential as well as the hydrodynamic diameter (HDD) of CuO as compared to NP-9.

View Article and Find Full Text PDF

The presence of natural organic matter (NOM) in drinking water sources can stabilize toxic antimony (Sb) species, thus enhancing their mobility and causing adverse effects on human health. Therefore, the present study aims to quantitatively explore the complexation of hydrophobic/hydrophilic NOM, i.e.

View Article and Find Full Text PDF

The use of zinc oxide nanoparticles (ZnO NPs) and polybrominated diphenyl ethers (PBDPEs) in different products and applications leads to the likelihood of their co-occurrence in the aquatic system, making it important to study the effect of PBDPEs on the fate and transport of ZnO NPs. In this study, we determine the influence of PBDPEs (BDPE-47 and BDPE-209) on the colloidal stability and physicochemical properties of ZnO NPs in different aqueous matrices. The results indicated the shift in ζ potential of ZnO NP from positive to negative in the presence of both PBDPEs in all tested waters; however, the effect on the NPs surface potential was specific to each water considered.

View Article and Find Full Text PDF

The increased use of engineered nanoparticles (ENPs), such as copper oxide nanoparticles (CuO NPs), in commercial products and applications raises concern regarding their possible release into freshwater sources. Therefore, their removal from water is important to eliminate adverse environmental and human health effects. In this study, the effects of pH and natural organic matter (NOM), i.

View Article and Find Full Text PDF