IEEE Int Conf Rehabil Robot
July 2022
This study describes an interdisciplinary approach to develop a 5 degrees of freedom assistive upper limb exoskeleton (ULE) for users with severe to complete functional tetraplegia. Four different application levels were identified for the ULE ranging from basic technical application to interaction with users, interaction with caregivers and interaction with the society, each level posing requirements for the design and functionality of the ULE. These requirements were addressed through an interdisciplinary collaboration involving users, clinicians and researchers within social sciences and humanities, mechanical engineering, control engineering media technology and biomedical engineering.
View Article and Find Full Text PDFSensors (Basel)
September 2022
This paper presents the EXOTIC- a novel assistive upper limb exoskeleton for individuals with complete functional tetraplegia that provides an unprecedented level of versatility and control. The current literature on exoskeletons mainly focuses on the basic technical aspects of exoskeleton design and control while the context in which these exoskeletons should function is less or not prioritized even though it poses important technical requirements. We considered all sources of design requirements, from the basic technical functions to the real-world practical application.
View Article and Find Full Text PDFSpinal cord injury can leave the affected individual severely disabled with a low level of independence and quality of life. Assistive upper-limb exoskeletons are one of the solutions that can enable an individual with tetraplegia (paralysis in both arms and legs) to perform simple activities of daily living by mobilizing the arm. Providing an efficient user interface that can provide full continuous control of such a device-safely and intuitively-with multiple degrees of freedom (DOFs) still remains a challenge.
View Article and Find Full Text PDF