To promote sustainable development and reduce fossil fuel consumption, there is a growing demand for high-performance, cost-effective, safe and environmentally friendly batteries for large-scale energy storage systems. Among the emerging technologies, zinc-air batteries (ZABs) have attracted significant interest. By integrating the principles of traditional zinc-ion batteries and fuel cells, ZABs offer remarkably high theoretical energy density at lower production cost compared to the current state-of-the-art lithium-ion batteries (LIBs).
View Article and Find Full Text PDFTraditionally employed in alloy corrosion studies, dealloying has evolved into a versatile technique for fabricating advanced porous materials. The unique architecture of interconnected pore channels and continuous metal ligaments endows dealloyed materials with high surface-to-volume ratio, excellent electron conductivity, efficient mass transport and remarkable catalytic activity, positioning them at the forefront of nanomaterial applications with significant potential. However, reproducible synthesis of these structures remains challenging due to limitations in conventional dealloying techniques.
View Article and Find Full Text PDF