Publications by authors named "Muhammad Adrees"

In pursuit of sustainability and resource efficiency, concept of the circular economy has emerged as a promising framework for industries worldwide. The global fish processing industry generates a significant amount of waste, posing environmental challenges and economic inefficiencies. The substantial volume of fish waste generated globally along with its environmental impact highlights the urgent need to adopt sustainable practices.

View Article and Find Full Text PDF

High protein content, excellent amino acid profile, absence of anti-nutritional factors (ANFs), high digestibility and good palatability of fishmeal (FM), make it a major source of protein in aquaculture. Naturally derived FM is at risk due to an increase in its demand, unsustainable practices, and price. Thus, there is an urgent need to find affordable and suitable protein sources to replace FM.

View Article and Find Full Text PDF

Municipal solid waste (MSW) management poses a significant environmental challenge in municipalities across developing nations worldwide. Our studies were focused on characterizing the waste and analyzing the chemical properties of mixed waste fractions to assess their potential for waste-to-energy conversion. The objective of our study was to scrutinize the existing state of the MSW management system and gauge its waste generation rates.

View Article and Find Full Text PDF

The bioavailability, small size and direct absorption in the blood, make nanoparticles (NPs) a remarkable feed additive in the aquaculture industry. Therefore, dietary iron oxide nanoparticles (Fe O -NPs) were used to examine their effects on growth, nutrient absorption, body composition and blood indices in Cyprinus carpio (Common carp) fingerlings. Healthy C.

View Article and Find Full Text PDF

Chromium (Cr) is classified as a toxic metal as it exerts harmful effects on plants and human life. Bacterial-assisted nano-phytoremediation is an emerging and environment friendly technique that can be used for the detoxification of such pollutants. In current study, pot experiment was conducted in which spinach plants were grown in soil containing chromium (0, 5, 10, 20 mgkg) and treated with selected strain of Bacillus sp.

View Article and Find Full Text PDF

Both cadmium (Cd) toxicity and water limited stress in crop plants are serious concerns worldwide while little is known about the impact of various phosphorus (P) sources on Cd accumulation in cereals especially under water limited stress. A study was conducted to explore the efficiency of three frequently available P fertilizers on Cd accumulation in wheat under different soil moisture levels. Three different P sources including diammonium phosphate (DAP), single super phosphate (SSP), and nitrophos (NP) were applied in the soil with three levels (0, 50 and 100 mg/kg).

View Article and Find Full Text PDF

Abiotic stresses, such as heavy metals (HMs), drought, salinity and water logging, are the foremost limiting factors that adversely affect the plant growth and crop productivity worldwide. The plants respond to such stresses by activating a series of intricate mechanisms that subsequently alter the morpho-physiological and biochemical processes. Over the past few decades, abiotic stresses in plants have been managed through marker-assisted breeding, conventional breeding, and genetic engineering approaches.

View Article and Find Full Text PDF

The present experiment was conducted to appraise the role of different seed priming agents in circumventing the negative impact of chromium (Cr) toxicity on canola plants. Chromium toxicity resulted in significant decline in photosynthetic pigments and growth attributes of two canola cultivars (Puriga and MS-007). Cr toxicity also resulted in higher oxidative stress mirrored as greater accumulation of hydrogen peroxide (HO) superoxide radical (O), electrolyte leakage (EL) and malondialdehyde (MDA).

View Article and Find Full Text PDF

The effects of foliar supply of silicon nanoparticles (Si-NPs) on growth, physiology, and cadmium (Cd) uptake by wheat (Triticum aestivum L.) were examined in different soil moisture levels. Seeds were sown in soil containing excess Cd (7.

View Article and Find Full Text PDF

Plants often face incompatible growing environments like drought, salinity, cold, frost, and elevated temperatures that affect plant growth and development leading to low yield and, in worse circumstances, plant death. The arsenal of versatile compounds for plant consumption and structure is called metabolites, which allows them to develop strategies to stop enemies, fight pathogens, replace their competitors and go beyond environmental restraints. These elements are formed under particular abiotic stresses like flooding, heat, drought, cold, etc.

View Article and Find Full Text PDF

The continuous increase in the heavy metals concentration in the soil due to anthropogenic activities has become a global issue. The chromium, especially hexavalent chromium, is highly toxic for living organisms due to high mobility, solubility, and carcinogenic properties. Considering the beneficial role of nanoparticles and bacteria in alleviating the metal stress in plants, a study was carried out to evaluate the role of cerium dioxide (CeO) nanoparticles (NPs) and in alleviating the chromium toxicity in sunflower plants.

View Article and Find Full Text PDF

The present work provides an insight into the development of biochemical adaptations in mung beans against ozone (O) toxicity. The study aims to explore the O stress tolerance potential of mung bean genotypes under exogenous application of growth regulators. The seeds of twelve mung bean genotypes were grown in plastic pots under controlled conditions in the glasshouse.

View Article and Find Full Text PDF

Both cancer and diabetes mellitus are serious health issues, accounting more than 11 million deaths worldwide annually. Targeted use of plant-mediated nanoparticles (NPs) in treatment of ailments has outstanding results due to their salient properties. The current study was designed to investigate the safe production of silver nanoparticles (AgNPs) from Acacia nilotica.

View Article and Find Full Text PDF

Cadmium (Cd) toxicity in agricultural soils is serious concern these days which needs continuous attention. Little is known about the combined use of berseem and/or maize residues soil applied as a green manure alone or along with foliar dressing of zinc oxide nanoparticles (ZnONPs) on Cd accumulation in wheat (Triticum aestivum L.).

View Article and Find Full Text PDF

Agricultural soils are receiving higher inputs of trace elements (TEs) from anthropogenic activities. Application of nanoparticles (NPs) in agriculture as nano-pesticides and nano-fertilizers has gained rapid momentum worldwide. The NPs-based fertilizers can facilitate controlled-release of nutrients which may be absorbed by plants more efficiently than conventional fertilizers.

View Article and Find Full Text PDF

Nanotechnology is capturing great interest worldwide due to their stirring applications in various fields. Among nanoparticles (NPs), titanium dioxide (TiO) NPs have been widely used in daily life and can be synthesized through various physical, chemical, and green methods. Green synthesis is a non-toxic, cost-effective, and eco-friendly route for the synthesis of NPs.

View Article and Find Full Text PDF

A pot study was conducted to explore the effectiveness of zinc oxide nanoparticles (ZnO NPs) foliar exposure on growth and development of wheat, zinc (Zn) and cadmium (Cd) uptake in Cd-contaminated soil under various moisture conditions. Four different levels (0, 25, 50, 100 mg/L) of these NPs were foliar-applied at different time periods during the growth of wheat. Two soil moisture regimes (70% and 35% of water holding capacity) were maintained from 6 weeks of germination till plant harvesting.

View Article and Find Full Text PDF

Recently nanoparticles (NPs) are ubiquitous in the environment because they have unique characteristics which are the reason of their wide use in various fields. The release of NPs into various environmental compartments mainly ends up in the soil through water bodies which is a serious threat to living things especially plants. When present in soil, NPs may cause toxicity in plants which increase significance to minimize NPs stress in plants.

View Article and Find Full Text PDF

Cadmium (Cd) availability in arable soils is a serious issue while little is known about the role of co-composted organic amendments and zinc oxide nanoparticles (ZnO-NPs) foliar spray on biomass and Cd accumulation in wheat grains. The current study investigated the soil application of organic amendment (composted biochar and farmyard manure) at a level of 0, 1, and 2% w/w and foliar spray of ZnO-NPs (0, 100, and 200 mg/L) on biomass, yield, and Cd in wheat grains cultivated in an aged Cd-contaminated agricultural soil. The results indicated that organic amendment increased the biomass, chlorophyll concentrations, yield, and activities of peroxidase and superoxide dismutase of wheat while decreased the electrolyte leakage and Cd concentrations in different parts of wheat such as shoots, roots, husks, and grains.

View Article and Find Full Text PDF

Soil degradation with different stress conditions like accumulation of cadmium (Cd) contents in soil and drought stress has become one of the most dangerous issues that obstruct the sustainable agriculture production. Silicon nanoparticles (Si NPs) play beneficial roles in combating various biotic and abiotic stresses but their role under combined metal and drought stress is not studied. A pot study was designed to determine the effect of Si NPs on wheat (Triticum aestivum L.

View Article and Find Full Text PDF

Excess amount of cadmium (Cd) in arable soils and shortage of good quality water are the major abiotic factors affecting the crop yield which needs immediate solution to feed the increasing population worldwide. Recently, nanoparticles (NPs) are widely used in various industries including agriculture which is due to the unique properties of NPs. Among NPs, iron (Fe) NPs might be used to alleviate the abiotic stresses in crops but limited informations are available in the literature about the role of Fe-NPs in crops under metal stress.

View Article and Find Full Text PDF

Both cadmium (Cd) contamination in agricultural soils and drought stress pose a serious problem for crop quality and human health. Owing to the specific physical and chemical characteristics, zinc oxide (ZnO) nanoparticles (NPs) can be used in agriculture as a nanofertilizer but their impact on Cd accumulation in wheat (Triticum aestivum) grains under normal and limited water conditions remains insufficient. In this study, the efficiency of ZnO NPs on Cd intake by wheat was investigated under normal and water-limited conditions grown in Cd-contaminated soil for 125 days after seed sowing.

View Article and Find Full Text PDF

Due to the increase in area of cadmium (Cd)-contaminated soils worldwide, effective measures are necessary to minimize the Cd accumulation in cereals including maize (Zea mays L.) plant. A study was therefore performed to explore the effectiveness of foliar spray of zinc oxide (ZnO) nanoparticle (NPs) alone (0, 50, 75, 100 mg/L) or combined with soil application of biochar (1.

View Article and Find Full Text PDF

The effects of seed priming with zinc oxide (ZnO) and iron (Fe) nanoparticles (NPs) on the growth and cadmium (Cd) accumulation by wheat (Triticum aestivum) were investigated. Seeds of wheat were primed with different concentrations of either ZnO NPs (0, 25, 50, 75, and 100 mg L) or Fe NPs (0, 5, 10, 15, and 20 mg L) for 24 h by continuous aeration and then the seeds were sown in a soil which was contaminated with Cd due to long-term application of sewage water. Plants were grown till maturity under natural conditions with 60-70% moisture contents of total soil water holding capacity throughout the experiment.

View Article and Find Full Text PDF