The restoration of reefs damaged by global and local pressures remains constrained by the scale of intervention currently feasible. Traditional methods for ex situ sexual propagation of corals produce limited materials, typically of limited genetic diversity and only sufficient for small field trials. The development and validation of new technologies to upscale and automate coral propagation is required to achieve logistically and financially feasible reef restoration at ecologically relevant scales.
View Article and Find Full Text PDFPorolithon is one of the most ecologically important genera of tropical and subtropical crustose (non-geniculate) coralline algae growing abundantly along the shallow margins of coral reefs and functioning to cement reef frameworks. Thalli of branched, fruticose Porolithon specimens from the Indo-Pacific Ocean traditionally have been called P. gardineri, while massive, columnar forms have been called P.
View Article and Find Full Text PDFPopulation irruptions of crown-of-thorns starfish (COTS) cause extensive degradation of coral reefs, threatening the structure and function of these important ecosystems. For population irruptions to initiate and spread, large numbers of planktonic larvae have to successfully transition into their benthic life-history stage (i.e.
View Article and Find Full Text PDFMost marine sponge species harbour distinct communities of microorganisms which contribute to various aspects of their host's health and physiology. In addition to their key roles in nutrient transformations and chemical defence, these symbiotic microbes can shape sponge phenotype by mediating important developmental stages and influencing the environmental tolerance of the host. However, the characterisation of each microbial taxon throughout a sponge's life cycle remains challenging, with several sponge species hosting up to 3000 distinct microbial species.
View Article and Find Full Text PDFCoral larval settlement patterns are influenced by a vast array of factors; however, the relative roles of individual factors are rarely tested in isolation, leading to confusion about which are most crucial for settlement. For example, direct effects of the light environment are often cited as a major factor influencing settlement patterns, yet this has not been demonstrated under environmentally realistic lighting regimes in the absence of confounding factors. Here we apply programmable multispectral lights to create realistic light spectra, while removing correlating (but not obvious) factors that are common in laboratory settlement experiments.
View Article and Find Full Text PDFAnthropogenic CO emissions are causing ocean acidification, which can affect the physiology of marine organisms. Here we assess the possible effects of ocean acidification on the metabolic potential of sponge symbionts, inferred by metagenomic analyses of the microbiomes of two sponge species sampled at a shallow volcanic CO seep and a nearby control reef. When comparing microbial functions between the seep and control sites, the microbiome of the sponge Stylissa flabelliformis (which is more abundant at the control site) exhibits at the seep reduced potential for uptake of exogenous carbohydrates and amino acids, and for degradation of host-derived creatine, creatinine and taurine.
View Article and Find Full Text PDFSponges are important components of many marine communities and perform key functional roles. Little is known on the processes that drive larval dispersal and habitat selection in sponges, and in particular under stress scenarios. The increase in sediment in the marine environment is a growing concern for the health of ecosystems, but scarce information exists on the effects of sediment on sponge larvae.
View Article and Find Full Text PDFFEMS Microbiol Ecol
December 2018
Terrestrial runoff, resuspension events and dredging can affect filter-feeding sponges by elevating the concentration of suspended sediments, reducing light intensity, and smothering sponges with sediments. To investigate how sponges respond to pressures associated with increased sediment loads, the abundant and widely distributed Indo-Pacific species was exposed to elevated suspended sediment concentrations, sediment deposition, and light attenuation for 48 h (acute exposure) and 4 weeks (chronic exposure). In order to visualise the response mechanisms, sponge tissue was examined by 3D X-ray microscopy and scanning electron microscopy (SEM).
View Article and Find Full Text PDFChanges in turbidity, sedimentation and light over a two year large scale capital dredging program at Onslow, northwestern Australia, were quantified to assess their effects on filter feeder communities, in particular sponges. Community functional morphological composition was quantified using towed video surveys, while dive surveys allowed for assessments of species composition and chlorophyll content. Onslow is relatively diverse recording 150 sponge species.
View Article and Find Full Text PDFFor sessile marine invertebrates with complex life cycles, habitat choice is directed by the larval phase. Defining which habitat-linked cues are implicated in sessile invertebrate larval settlement has largely concentrated on chemical cues which are thought to signal optimal habitat. There has been less effort establishing physical settlement cues, including the role of surface microtopography.
View Article and Find Full Text PDFSponges (Phylum Porifera) are an evolutionary and ecologically significant group; however information on processes influencing sponge population distributions is surprisingly limited. Carteriospongia foliascens is a common Indo-Pacific sponge, which has been reported from the intertidal to the mesophotic. Interestingly, the distribution of C.
View Article and Find Full Text PDF