Publications by authors named "Muhamadali H"

Introduction: Rapid detection and identification of pathogens and antimicrobial susceptibility is essential for guiding appropriate antimicrobial therapy and reducing morbidity and mortality associated with sepsis.

Objectives: The metabolic response of clinical isolates of Klebsiella oxytoca exposed to different concentrations of ciprofloxacin (the second generation of quinolones antibiotics) were studied in order to investigate underlying mechanisms associated with antimicrobial resistance (AMR).

Methods: Metabolomics investigations were performed using Fourier-transform infrared (FT-IR) spectroscopy as a metabolic fingerprinting approach combined with gas chromatography-mass spectrometry (GC-MS) for metabolic profiling.

View Article and Find Full Text PDF

Microbial communities play crucial roles in shaping natural ecosystems, impacting human well-being, and driving advancements in industrial biotechnology. However, associating specific metabolic functions with bacteria proves challenging due to the vast diversity of microorganisms within these communities. In the past decades stable isotope probing (SIP) approaches, coupled with vibrational spectroscopy, have emerged as a novel method for revealing microbial metabolic roles and interactions in complex communities.

View Article and Find Full Text PDF
Article Synopsis
  • Urinary tract infections (UTIs) are common and costly, especially in developing countries, with this study investigating the antimicrobial resistance (AMR) of bacteria causing UTIs in Dhaka, Bangladesh.
  • Among 6549 urine samples, 1001 were positive, showing a higher prevalence in females and revealing that 71.19% of bacterial isolates were multidrug resistant (MDR), especially in children aged 0-10 years.
  • The study found that most uropathogens were resistant to common antibiotics, highlighting the need for regular monitoring of AMR patterns to maintain effective treatment options.
View Article and Find Full Text PDF

Sepsis is a life-threatening condition arising from a dysregulated host immune response to infection, leading to a substantial global health burden. The accurate identification of bacterial pathogens in sepsis is essential for guiding effective antimicrobial therapy and optimising patient outcomes. Traditional culture-based bacterial typing methods present inherent limitations, necessitating the exploration of alternative diagnostic approaches.

View Article and Find Full Text PDF

Proof-of-concept study, highlighting the clinical diagnostic ability of FT-IR compared with MALDI-TOF MS, combined with WGS. 104 pathogenic isolates of , , and were analyzed. Overall prediction accuracy was 99.

View Article and Find Full Text PDF

Phenotypic heterogeneity is commonly found among bacterial cells within microbial populations due to intrinsic factors as well as equipping the organisms to respond to external perturbations. The emergence of phenotypic heterogeneity in bacterial populations, particularly in the context of using these bacteria as microbial cell factories, is a major concern for industrial bioprocessing applications. This is due to the potential impact on overall productivity by allowing the growth of subpopulations consisting of inefficient producer cells.

View Article and Find Full Text PDF

The biological production of hydrogen is an appealing approach to mitigating the environmental problems caused by the diminishing supply of fossil fuels and the need for greener energy. is one of the best-characterized microorganisms capable of consuming glycerol-a waste product of the biodiesel industry-and producing H and ethanol. However, the natural capacity of to generate these compounds is insufficient for commercial or industrial purposes.

View Article and Find Full Text PDF

Metabolomics is a powerful research discovery tool with the potential to measure hundreds to low thousands of metabolites. In this review, we discuss the application of GC-MS and LC-MS in discovery-based metabolomics research, we define metabolomics workflows and we highlight considerations that need to be addressed in order to generate robust and reproducible data. We stress that metabolomics is now routinely applied across the biological sciences to study microbiomes from relatively simple microbial systems to their complex interactions within consortia in the host and the environment and highlight this in a range of biological species and mammalian systems including humans.

View Article and Find Full Text PDF

The rise and extensive spread of antimicrobial resistance (AMR) has become a growing concern, and a threat to the environment and human health globally. The majority of current AMR identification methods used in clinical setting are based on traditional microbiology culture-dependent techniques which are time-consuming or expensive to be implemented, thus appropriate antibiotic stewardship is provided retrospectively which means the first line of treatment is to hope that a broad-spectrum antibiotic works. Hence, culture-independent and single-cell technologies are needed to allow for rapid detection and identification of antimicrobial-resistant bacteria and to support a more targeted and effective antibiotic therapy preventing further development and spread of AMR.

View Article and Find Full Text PDF

Sepsis is a life-threatening clinical condition responsible for approximately 11 million deaths worldwide. Rapid and accurate identification of pathogenic bacteria and its antimicrobial susceptibility play a critical role in reducing the morbidity and mortality rates related to sepsis. Raman and infrared spectroscopies have great potential to be used as diagnostic tools for rapid and culture-free detection of bacterial infections.

View Article and Find Full Text PDF

Introduction: Glycerol is a byproduct from the biodiesel industry that can be biotransformed by Escherichia coli to high added-value products such as succinate under aerobic conditions. The main genetic engineering strategies to achieve this aim involve the mutation of succinate dehydrogenase (sdhA) gene and also those responsible for acetate synthesis including acetate kinase, phosphate acetyl transferase and pyruvate oxidase encoded by ackA, pta and pox genes respectively in the ΔsdhAΔack-ptaΔpox (M4) mutant. Other genetic manipulations to rewire the metabolism toward succinate consist on the activation of the glyoxylate shunt or blockage the pentose phosphate pathway (PPP) by deletion of isocitrate lyase repressor (iclR) or gluconate dehydrogenase (gnd) genes on M4-ΔiclR and M4-Δgnd mutants respectively.

View Article and Find Full Text PDF

Optimization of recombinant protein expression in bacteria is an important task in order to increase protein yield while maintaining the structural fidelity of the product. In this study, we employ Fourier transform infrared (FT-IR) spectroscopy as a high throughput metabolic fingerprinting approach to optimize and monitor cytochrome (CYT ) production in N4830-1, as the heterologous host. Cyt b was introduced as a plasmid with between 0 and 6 copies under a strong promoter.

View Article and Find Full Text PDF

We report the use of a novel technology based on optical photothermal infrared (O-PTIR) spectroscopy for obtaining simultaneous infrared and Raman spectra from the same location of the sample allowing us to study bacterial metabolism by monitoring the incorporation of C- and N-labeled compounds. Infrared data obtained from bulk populations and single cells via O-PTIR spectroscopy were compared to conventional Fourier transform infrared (FTIR) spectroscopy in order to evaluate the reproducibility of the results achieved by all three approaches. Raman spectra acquired were concomitant with infrared data from bulk populations as well as infrared spectra collected from single cells, and were subjected to principal component analysis in order to evaluate any specific separation resulting from the isotopic incorporation.

View Article and Find Full Text PDF

Ninety-four years have passed since the discovery of the Raman effect, and there are currently more than 25 different types of Raman-based techniques. The past two decades have witnessed the blossoming of Raman spectroscopy as a powerful physicochemical technique with broad applications within the life sciences. In this review, we critique the use of Raman spectroscopy as a tool for quantitative metabolomics.

View Article and Find Full Text PDF

We report that the cellular uptake of stable isotope-labeled compounds by bacteria can be probed at the single-cell level using infrared spectroscopy, and this monitors the chemical vibrations affected by the incorporation of "heavy" atoms by cells and thus can be used to understand microbial systems. This presents a significant advancement as most studies have focused on evaluating communities of cells due to the poor spatial resolution achieved by classical infrared microspectrometers, and to date, there is no study evaluating the incorporation of labeled compounds by bacteria at single-cell levels using infrared spectroscopy. The development of new technologies and instrumentations that provide information on the metabolic activity of a single bacterium is critical as this will allow for a better understanding of the interactions between microorganisms as well as the function of individual members and their interactions in different microbial communities.

View Article and Find Full Text PDF

Microbial communities play essential functions which drive various ecosystems supporting animal and aquatic life. However, linking bacteria with specific metabolic functions is difficult, since microbial communities consist of numerous and phylogenetically diverse microbes. Stable isotope probing (SIP) combined with single-cell tools has emerged as a novel culture-independent strategy for unravelling microbial metabolic roles and intertwined interactions in complex communities.

View Article and Find Full Text PDF

Rapid and accurate classification and discrimination of bacteria is an important task and has been highlighted recently for rapid diagnostics using real-time results. Coupled with a recent report by Jim O'Neill [] that if left unaddressed antimicrobial resistance (AMR) in bacteria could kill 10 million people per year by 2050, which would surpass current cancer mortality, this further highlights the need for unequivocal identification of microorganisms. Whilst traditional microbiological testing has offered insights into the characterisation and identification of a wide range of bacteria, these approaches have proven to be laborious and time-consuming and are not really fit for purpose, considering the modern day speed and volume of international travel and the opportunities it creates for the spread of pathogens globally.

View Article and Find Full Text PDF

The variable configuration of Raman spectroscopic platforms is one of the major obstacles in establishing Raman spectroscopy as a valuable physicochemical method within real-world scenarios such as clinical diagnostics. For such real world applications like diagnostic classification, the models should ideally be usable to predict data from different setups. Whether it is done by training a rugged model with data from many setups or by a primary-replica strategy where models are developed on a 'primary' setup and the test data are generated on 'replicate' setups, this is only possible if the Raman spectra from different setups are consistent, reproducible, and comparable.

View Article and Find Full Text PDF

There is an urgent need to develop novel antifungals to tackle the threat fungal pathogens pose to human health. Here, we have performed a comprehensive characterization and validation of the promising target methionine synthase (MetH). We show that in the absence of this enzymatic activity triggers a metabolic imbalance that causes a reduction in intracellular ATP, which prevents fungal growth even in the presence of methionine.

View Article and Find Full Text PDF

In the past two decades, metabolomics has proved to be a valuable tool with many potential applications in different areas of science. However, there are still some challenges that need to be addressed, particularly for multicenter studies. These challenges are mainly attributed to various sources of fluctuation and unwanted variations that can be introduced at pre-analytical, analytical, and/or post-analytical steps of any metabolomics experiment.

View Article and Find Full Text PDF

The goal of any topical formulation is efficient transdermal delivery of its active components. However, delivery of compounds can be problematic with penetration through tough layers of fibrotic dermal scar tissue. We propose a new approach combining high-performance liquid chromatography (HPLC) and Raman spectroscopy (RS) using a topical of unknown composition against a well-known antiscar topical (as control).

View Article and Find Full Text PDF

Recently a species of was identified as the dominant photosynthetic organism during a bloom event in a high pH (pH ∼11.4), radioactive spent nuclear fuel pond (SNFP) at the Sellafield Ltd., United Kingdom facility.

View Article and Find Full Text PDF

Profiling skin microbiome and metabolome has been utilised to gain further insight into wound healing processes. The aims of this multi-part temporal study in 11 volunteers were to analytically profile the dynamic wound tissue and headspace metabolome and sequence microbial communities in acute wound healing at days 0, 7, 14, 21 and 28, and to investigate their relationship to wound healing, using non-invasive quantitative devices. Metabolites were obtained using tissue extraction, sorbent and polydimethylsiloxane patches and analysed using GCMS.

View Article and Find Full Text PDF

Surface-enhanced Raman scattering (SERS) is a powerful and sensitive technique for the detection of fingerprint signals of molecules and for the investigation of a series of surface chemical reactions. Many studies introduced quantitative applications of SERS in various fields, and several SERS methods have been implemented for each specific application, ranging in performance characteristics, analytes used, instruments, and analytical matrices. In general, very few methods have been validated according to international guidelines.

View Article and Find Full Text PDF

The Gram-negative bacterial pathogen Campylobacter jejuni is a major cause of foodborne gastroenteritis worldwide. Rapid detection and identification of C. jejuni informs timely prescription of appropriate therapeutics and epidemiological investigations.

View Article and Find Full Text PDF