Publications by authors named "Muhamad Risqi U Saputra"

In the last decade, numerous supervised deep learning approaches have been proposed for visual-inertial odometry (VIO) and depth map estimation, which require large amounts of labelled data. To overcome the data limitation, self-supervised learning has emerged as a promising alternative that exploits constraints such as geometric and photometric consistency in the scene. In this study, we present a novel self-supervised deep learning-based VIO and depth map recovery approach (SelfVIO) using adversarial training and self-adaptive visual-inertial sensor fusion.

View Article and Find Full Text PDF