Publications by authors named "Muhamad Faisal"

The existing multilabel X-Ray image learning tasks generally contain much information on pathology co-occurrence and interdependency, which is very important for clinical diagnosis. However, the challenging part of this subject is to accurately diagnose multiple diseases that occurred in a single X-Ray image since multiple levels of features are generated in the images, and create different features as in single label detection. Various works were developed to address this challenge with proposed deep learning architectures to improve classification performance and enrich diagnosis results with multi-probability disease detection.

View Article and Find Full Text PDF

Infertility has become a common problem in global health, and unsurprisingly, many couples need medical assistance to achieve reproduction. Many human behaviors can lead to infertility, which is none other than unhealthy sperm. The important thing is that assisted reproductive techniques require selecting healthy sperm.

View Article and Find Full Text PDF

In the last decade, deep learning has enjoyed its spotlight as the game-changing addition to smart farming and precision agriculture. Such development has been predominantly observed in developed countries, while on the other hand, in developing countries most farmers especially ones with smallholder farms have not enjoyed such wide and deep adoption of this new technologies. In this paper we attempt to improve the image classification part of smart farming and precision agriculture.

View Article and Find Full Text PDF