Publications by authors named "Mugnaioli E"

Article Synopsis
  • The study explores the synthesis of crystal-pure wurtzite gallium phosphide (GaP) nanowires containing gallium arsenide phosphide (GaAsP) quantum dots for emission in the visible-to-near-infrared spectrum (650-720 nm).
  • The research details the growth processes, challenges faced, and solutions, leading to precise control over the shape and composition of the quantum dots, which enhances wavelength tunability.
  • Results from low-temperature microphotoluminescence confirm the emission properties of the nanowires, demonstrating efficient carrier recombination and potential applications in quantum optics and nanophotonics.
View Article and Find Full Text PDF

Virgin and environmentally aged polypropylene (PP) micropowders (V-PP and E-PP, respectively) were used as reference microplastics (MPs) in comparative photo- and thermo-oxidative ageing experiments performed on their mixtures with a natural ferrous sand (NS) and with a metal-free silica sand (QS). The ferrous NS was found to catalyze the photo-oxidative degradation of V-PP after both UV and simulated solar light irradiation. The catalytic activity in the V-PP/NS mixture was highlighted by the comparatively higher fraction of photo-oxidized PP extracted in dichloromethane, and the higher carbonyl index of the bulk polymer extracted with boiling xylene, when compared with the V-PP/QS mixture.

View Article and Find Full Text PDF

Cisplatin chemoradiotherapy (CRT) is the established standard of care for managing locally advanced human papillomavirus-positive head/neck carcinoma. The typically young patients may suffer serious and long-time side effects caused by the treatment, such as dysphagia, and hearing loss. Thus, ensuring a satisfactory post-treatment quality of life is paramount.

View Article and Find Full Text PDF

Pyrolysis in an inert atmosphere is a widely applied route to convert tannery wastes into reusable materials. In the present study, the Cr(III) conversion into the toxic hexavalent form in the pyrolyzed tannery waste referred to as KEU was investigated. Ageing experiments and leaching tests demonstrated that the Cr(III)-Cr(VI) inter-conversion occurs in the presence of air at ambient temperature, enhanced by wet environmental conditions.

View Article and Find Full Text PDF

Although all six asbestos minerals (the layer silicate chrysotile and five chain silicate species actinolite asbestos, amosite, anthophyllite asbestos, crocidolite and tremolite asbestos) are classified as carcinogenic, chrysotile is still mined and used in many countries worldwide. Other countries, like Italy, impose zero tolerance for all asbestos species, but conflicting views repress the development of globally uniform treaties controlling international trade of asbestos-containing materials. Hence, countries with more severe legislations against the use of these hazardous materials lack of an international safety net against importation of non-compliant products.

View Article and Find Full Text PDF
Article Synopsis
  • Erionite is a fibrous zeolite classified as a Group 1 carcinogen, posing similar or greater cancer risks than regulated asbestos minerals.
  • It is linked to over 50% of deaths from malignant mesothelioma in certain villages in Turkey, highlighting its severe health impact.
  • Recent research successfully determined the crystal structure of erionite using advanced techniques, which is crucial for understanding its toxicity and potential physical similarities to asbestos.
View Article and Find Full Text PDF

Skin burns are debilitating injuries with significant morbidity and mortality associated with infections and sepsis, particularly in immunocompromised patients. In this context, nanotechnology can provide pioneering approaches for the topical treatment of burnt skin. Herein, the significant recovery of radiation-damaged skin by exploiting copper ultrasmall-in-nano architectures (CuNAs) dispersed in a home-made cosmetic cream is described and compared to other noble metals (such as gold).

View Article and Find Full Text PDF

The true molecular conformation and the crystal structure of benzo[e]dinaphtho[2,3-a;1',2',3',4'-ghi]fluoranthene, 7,14-diphenylnaphtho[1,2,3,4-cde]bisanthene and 7,16-diphenylnaphtho[1,2,3,4-cde]helianthrene were determined ab initio by 3D electron diffraction. All three molecules are remarkable polycyclic aromatic hydrocarbons. The molecular conformation of two of these compounds could not be determined via classical spectroscopic methods due to the large size of the molecule and the occurrence of multiple and reciprocally connected aromatic rings.

View Article and Find Full Text PDF

Colloidal chemistry grants access to a wealth of materials through simple and mild reactions. However, even few elements can combine in a variety of stoichiometries and structures, potentially resulting in impurities or even wrong products. Similar issues have been long addressed in organic chemistry by using reaction-directing groups, that are added to a substrate to promote a specific product and are later removed.

View Article and Find Full Text PDF

In the past few years, many exciting papers reported results based on crystal structure determination by electron diffraction. The aim of this review is to provide general and practical information to structural chemists interested in stepping into this emerging field. We discuss technical characteristics of electron microscopes for research units that would like to acquire their own instrumentation, as well as those practical aspects that appear different between X-ray and electron crystallography.

View Article and Find Full Text PDF

The structure solution of the δ-polymorph of indomethacin was obtained using three-dimensional electron diffraction. This form shows a significantly enhanced dissolution rate compared with the more common and better studied α- and γ-polymorphs, indicating better biopharmaceutical properties for medicinal applications. The structure was solved in non-centrosymmetric space group P2 and comprises two molecules in the asymmetric unit.

View Article and Find Full Text PDF

Coesite in impact rocks is traditionally considered a retrograde product formed during pressure release by the crystallisation of an amorphous phase (either silica melt or diaplectic glass). Recently, the detailed microscopic and crystallographic study of impact ejecta from Kamil crater and the Australasian tektite strewn field pointed in turn to a different coesite formation pathway, through subsolidus quartz-to-coesite transformation. We report here further evidence documenting the formation of coesite directly from quartz.

View Article and Find Full Text PDF

Herein we demonstrate the prowess of the 3D electron diffraction approach by unveiling the structure of terrylene, the third member in the series of peri-condensed naphthalene analogues, which has eluded structure determination for 65 years. The structure was determined by direct methods using electron diffraction data and corroborated by dispersion-inclusive density functional theory optimizations. Terrylene crystalizes in the monoclinic space group P2 /a, arranging in a sandwich-herringbone packing motif, similar to analogous compounds.

View Article and Find Full Text PDF

Kaliophilite is a feldspathoid mineral found in two Italian magmatic provinces and represents one of the 12 known phases with composition close to KAlSiO. Despite its apparently simple formula, the structure of this mineral revealed extremely complex and resisted structure solution for more than a century. Samples from the Vesuvius-Monte Somma and Alban Hills volcanic areas were analyzed through a multi-technique approach, and finally the crystal structure of kaliophilite was solved using 3D electron diffraction and refined against X-ray diffraction data of a twinned crystal.

View Article and Find Full Text PDF

Cowlesite, ideally CaAlSiO·36HO, is to date the only natural zeolite whose structure could not be determined by X-ray methods. In this paper, we present the ab initio structure determination of this mineral obtained by three-dimensional (3D) electron diffraction data collected from single-crystal domains of a few hundreds of nanometers. The structure of cowlesite consists of an alternation of rigid zeolitic layers and low-density interlayers supported by water and cations.

View Article and Find Full Text PDF

The incommensurately modulated crystal structure of the mineral daliranite has been determined using 3D electron diffraction data obtained on nanocrystalline domains. Daliranite is orthorhombic with a = 21, b = 4.3, c = 9.

View Article and Find Full Text PDF

Diffuse scattering, observed as intensity distribution between the Bragg peaks, is associated with deviations from the average crystal structure, generally referred to as disorder. In many cases crystal defects are seen as unwanted perturbations of the periodic structure and therefore they are often ignored. Yet, when it comes to the structure analysis of nano-volumes, what electron crystallography is designed for, the significance of defects increases.

View Article and Find Full Text PDF

We report the colloidal synthesis of a series of surfactant-stabilized lead chalcohalide nanocrystals. Our work is mainly focused on PbSBr, a chalcohalide phase unknown to date that does not belong to the ambient-pressure PbS-PbBr phase diagram. The PbSBr nanocrystals herein feature a remarkably narrow size distribution (with a size dispersion as low as 5%), a good size tunability (from 7 to ∼30 nm), an indirect bandgap, photoconductivity (responsivity = 4 ± 1 mA/W), and stability for months in air.

View Article and Find Full Text PDF

An effort to synthesize the Cu(I) variant of a lead-free double perovskite isostructural with CsAgInCl resulted in the formation of CsCuInCl nanocrystals with an unusual structure, as revealed by single-nanocrystal three-dimensional electron diffraction. These nanocrystals adopt a ABX structure (KPtCl type, termed vacancy ordered perovskite) with tetrahedrally coordinated Cu(I) ions. In the structure, 25% of the A sites are occupied by [CuCl] clusters (75% by Cs), and the B sites are occupied by In.

View Article and Find Full Text PDF

Garnet is the archetypal cubic mineral, occurring in a wide variety of rock types in Earth's crust and upper mantle. Owing to its prevalence, durability and compositional diversity, garnet is used to investigate a broad range of geological processes. Although birefringence is a characteristic feature of rare Ca-Fe garnet and Ca-rich hydrous garnet, the optical anisotropy that has occasionally been documented in common (that is, anhydrous Ca-Fe-Mg-Mn) garnet is generally attributed to internal strain of the cubic structure.

View Article and Find Full Text PDF

Crystallography of nanocrystalline materials has witnessed a true revolution in the past 10 years, thanks to the introduction of protocols for 3D acquisition and analysis of electron diffraction data. This method provides single-crystal data of structure solution and refinement quality, allowing the atomic structure determination of those materials that remained hitherto unknown because of their limited crystallinity. Several experimental protocols exist, which share the common idea of sampling a sequence of diffraction patterns while the crystal is tilted around a noncrystallographic axis, namely, the goniometer axis of the transmission electron microscope sample stage.

View Article and Find Full Text PDF

To understand in-depth material properties, manufacturing, and conservation in cultural heritage artefacts, there is a strong need for advanced characterization tools that enable analysis down to the nanometric scale. Transmission electron microscopy (TEM) and electron diffraction (ED) techniques, like 3D precession electron diffraction tomography and ASTAR phase/orientation mapping, are proposed to study cultural heritage materials at nanoscale. In this work, we show how electron crystallography in TEM helps to determine precise structural information and phase/orientation distribution of various pigments in cultural heritage materials from various historical periods like Greek amphorisks, Roman glass tesserae, and pre-Hispanic Maya mural paintings.

View Article and Find Full Text PDF

Orthocetamol is a regioisomer of the well-known pain medication paracetamol and a promising analgesic and an anti-arthritic medicament itself. However, orthocetamol cannot be grown as single crystals suitable for X-ray diffraction, so its crystal structure has remained a mystery for more than a century. Here, we report the ab-initio structure determination of orthocetamol obtained by 3D electron diffraction, combining a low-dose acquisition method and a dedicated single-electron detector for recording the diffracted intensities.

View Article and Find Full Text PDF

Recent advances in 3D electron diffraction have allowed the structure determination of several model proteins from submicrometric crystals, the unit-cell parameters and structures of which could be immediately validated by known models previously obtained by X-ray crystallography. Here, the first new protein structure determined by 3D electron diffraction data is presented: a previously unobserved polymorph of hen egg-white lysozyme. This form, with unit-cell parameters = 31.

View Article and Find Full Text PDF

Despite its thermodynamical metastability at near-surface conditions, aragonite is widespread in marine and terrestrial sediments. It abundantly forms in living organisms, and its abiotic formation is favored in waters of a Mg/Ca ratio > 1.5.

View Article and Find Full Text PDF